976 resultados para short tandem repeat
Resumo:
Glaciers are often assumed to deform only at slow (i.e., glacial) rates. However, with the advent of high rate geodetic observations of ice motion, many of the intricacies of glacial deformation on hourly and daily timescales have been observed and quantified. This thesis explores two such short timescale processes: the tidal perturbation of ice stream motion and the catastrophic drainage of supraglacial meltwater lakes. Our investigation into the transmission length-scale of a tidal load represents the first study to explore the daily tidal influence on ice stream motion using three-dimensional models. Our results demonstrate both that the implicit assumptions made in the standard two-dimensional flow-line models are inherently incorrect for many ice streams, and that the anomalously large spatial extent of the tidal influence seen on the motion of some glaciers cannot be explained, as previously thought, through the elastic or viscoelastic transmission of tidal loads through the bulk of the ice stream. We then discuss how the phase delay between a tidal forcing and the ice stream’s displacement response can be used to constrain in situ viscoelastic properties of glacial ice. Lastly, for the problem of supraglacial lake drainage, we present a methodology for implementing linear viscoelasticity into an existing model for lake drainage. Our work finds that viscoelasticity is a second-order effect when trying to model the deformation of ice in response to a meltwater lake draining to a glacier’s bed. The research in this thesis demonstrates that the first-order understanding of the short-timescale behavior of naturally occurring ice is incomplete, and works towards improving our fundamental understanding of ice behavior over the range of hours to days.
Resumo:
A repeat-until-success (RUS) measurement-based scheme for the implementation of the distributed quantum computation by using single-photon interference at a 50:50 beam splitter is proposed. It is shown that the 50:50 beam splitter can naturally project a suitably encoded matter-photon state to either a desired entangling gate-operated state of the matter qubits or to their initial state when the photon is detected. The recurrence of the initial state permits us to implement the desired entangling gate in a RUS way. To implement a distributed quantum computation we suggest an encoding method by means of the effect of dipole-induced transparency proposed recently [E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006)]. The effects of the unfavorable factors on our scheme are also discussed.
Resumo:
An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.
Resumo:
An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.
Resumo:
An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.
Resumo:
The effects of electron temperature on the radiation fields and the resistance of a short dipole antenna embedded in a uniaxial plasma have been studied. It is found that for ω < ω_p the antenna excites two waves, a slow wave and a fast wave. These waves propagate only within a cone whose axis is parallel to the biasing magnetostatic field B_o and whose semicone angle is slightly less than sin ^(-1) (ω/ω_p). In the case of ω > ω_p the antenna excites two separate modes of radiation. One of the modes is the electromagnetic mode, while the other mode is of hot plasma origin. A characteristic interference structure is noted in the angular distribution of the field. The far fields are evaluated by asymptotic methods, while the near fields are calculated numerically. The effects of antenna length ℓ, electron thermal speed, collisional and Landau damping on the near field patterns have been studied.
The input and the radiation resistances are calculated and are shown to remain finite for nonzero electron thermal velocities. The effect of Landau damping and the antenna length on the input and radiation resistances has been considered.
The radiation condition for solving Maxwell's equations is discussed and the phase and group velocities for propagation given. It is found that for ω < ω_p in the radial direction (cylindrical coordinates) the power flow is in the opposite direction to that of the phase propagation. For ω > ω_p the hot plasma mode has similar characteristics.
Resumo:
During the 1950s and 1960s, F.J.H. Mackereth developed and published plans for a series of pneumatic samplers for lake sediments. Unfortunately, as the equipment was continually evolving during ensuing research, no user manuals, beyond the original publication, had been produced. Over the last few years there have been a few potentially very serious accidents with the 1-metre corer, which has prompted the authors to carry out a risk assessment. This highlighted two weaknesses in the design and its later developments. They can be corrected simply by checking for screw threads that may have been added to the exhaust port on the mini-corer, and by changing the operating procedure. An A4 nine-page user manual is now available from the authors. A small charge ( pound sterling 10 in 1998) will be made to cover handling costs and postage.
Resumo:
The Danube is ca. 2850 km in length and is the second largest river in Europe. The Austrian part of the Danube falls 156 metres in altitude over its 351 km length and, since the early 1950s, the river has been developed into a power-generating waterway, so that the continuity of the river is now interrupted by ten impounded areas. Only two stretches of the original free-flowing river are left, the Wachau region (above river-km 2005, west of Vienna) and the region downstream from the impoundment at Vienna (river-km 1921). Most of the recent theories and concepts related to invertebrates, in the context of the ecology of running waters, are based on studies on small streams, whereas investigations of large rivers have played a minor role for a long time, mainly due to methodological difficulties. The authors' recent detailed studies on macroinvertebrates in the free-flowing section of the Danube below Vienna, provide an excellent opportunity to survey or restate scientific hypotheses on the basis of a large river. In this review the main interest focuses on the investigation of biodiversity, i.e. the number of species and their relative proportions in the whole invertebrate community, as well as major governing environmental factors. The article summarises the species composition, the important environmental variables at the river cross-section and the effect of upstream impoundment on the riverbed and its fauna.
Resumo:
Hairpin pyrrole-imdazole polyamides are cell-permeable, sequence-programmable oligomers that bind in the minor groove of DNA. This thesis describes studies of Py-Im polyamides targeted to biologically important DNA repeat sequences for the purpose of modulating disease states. Design of a hairpin polyamide that binds the CG dyad, a site of DNA methylation that can become dysregulated in cancer, is described. We report the synthesis of a DNA methylation antagonist, its sequence specificity and affinity informed by Bind-n-Seq and iteratively designed, which improves inhibitory activity in a cell-free assay by 1000-fold to low nanomolar IC50. Additionally, a hairpin polyamide targeted to the telomeric sequence is found to trigger a slow necrotic-type cell death with the release of inflammatory molecules in a model of B cell lymphoma. The effects of the polyamide are unique in this class of oligomers; its effects are characterized and a functional assay of phagocytosis by macrophages is described. Additionally, hairpin polyamides targeted to pathologically expanded CTG•CAG triplet repeat DNA sequences, the molecular cause of myotonic dystrophy type 1, are synthesized and assessed for toxicity. Lastly, ChIP-seq of Hypoxia-Inducible Factor is performed under hypoxia-induced conditions. The study results show that ChIP-seq can be employed to understand the genome-wide perturbation of Hypoxia-Inducible Factor occupancy by a Py-Im polyamide.
Resumo:
During the past few years the attention of architects, engineers and others encased in or connected with the building industry has been attracted to the possibilities of the application of welding processes to the joining of structural members. As oxy-acetylene welding was developed before electric arc welding became perfected it was only natural that the gas torch should be first considered. It developed however on examination of the two processes that while acetylene welding gave better results in most cases it was only in the hands of experts that it could consistently outscore the arc as a welding medium. Arc-welding has the advantage over the acetylene process, where each individual operator must use his own judgement as to the proper flame, in that a squad of arc-welders can work under the direction of a single expert supervisor who accepts the responsibility of fixing the current value and of determining the proper size of welding rod to be used on any given type of work.