786 resultados para shoot weight and elongation
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
The chemical composition and evaluation of Indian squid (Loligo duvauceli) mantle, epidermal connective tissue and tentacle is investigated in this current study. It is observed that squid mantle contains 22.2% total protein; 63.5% of the total protein is myofibrillar protein. The unique property of squid myofibrillar protein is its water solubility. Squid mantle contains 12.0% total collagen. Epidermal connective tissue has highest amounts of total collagen (17.8%). SDS-PAGE of total collagen identified high molecular weight α-, β- and γ- sub-chains. Amino acid profile analysis indicates that mantle and tentacle contain essential amino acids. Arginine forms a major portion of mantle collagen (272.5 g/100 g N). Isoleucine, glutamic acid and lysine are other amino acids that are found in significantly high amounts in the mantle. Sulphur containing cystine is deficit in mantle collagen. Papain digest of mantle and epidermal connective tissue is rich in uronic acid, while papain digest, collagenase digest and urea digest of epidermal connective tissue has significant amounts of sialic acid (25.2, 33.2 and 99.8 μmol /100 g, respectively). PAS staining of papain digest, collagenase digest and urea digest also identify the association of hexoses with low molecular weight collagen fragments. Histochemical sectioning also emphasized the localized distribution of collagen in epidermal and dermal region and very sparse fibres traverse the myotome bundles
Resumo:
The relative zinc (Zn) efficiencies of 33 wheat and 3 barley cultivars were determined by growing them in chelate-buffered culture solutions. Zn efficiency, determined by growth in a Zn-deficient solution relative to that in a medium containing an adequate concentration of Zn, was found to vary between 10% and 63% among the cultivars tested. Out of the 36 cultivars tested, 12 proved to be Zn efficient, 10 were Zn inefficient, and the remaining 14 varieties were classed as intermediate. The most Zn-efficient cultivars included Bakhtawar, Gatcher S61, Wilgoyne, and Madrigal, and the most Zn inefficient included Durati, Songlen, Excalibur, and Chakwal-86. Zn-efficient cultivars accumulated greater amounts of Zn in their shoots than inefficient cultivars, but the correlation between shoot Zn and shoot dry matter production was poor. All the cultivars accumulated higher concentrations of iron (Fe), copper (Cu), manganese (Mn), and phosphorus (P) at deficient levels of Zn, compared with adequate Zn concentrations. The Zn-inefficient cultivars accumulated higher concentrations of these other elements compared to efficient cultivars.
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.
Resumo:
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000-8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.
Resumo:
The history of using vesicular systems for drug delivery to and through skin started nearly three decades ago with a study utilizing phospholipid liposomes to improve skin deposition and reduce systemic effects of triamcinolone acetonide. Subsequently, many researchers evaluated liposomes with respect to skin delivery, with the majority of them recording localized effects and relatively few studies showing transdermal delivery effects. Shortly after this, Transfersomes were developed with claims about their ability to deliver their payload into and through the skin with efficiencies similar to subcutaneous administration. Since these vesicles are ultradeformable, they were thought to penetrate intact skin deep enough to reach the systemic circulation. Their mechanisms of action remain controversial with diverse processes being reported. Parallel to this development, other classes of vesicles were produced with ethanol being included into the vesicles to provide flexibility (as in ethosomes) and vesicles were constructed from surfactants and cholesterol (as in niosomes). Thee ultradeformable vesicles showed variable efficiency in delivering low molecular weight and macromolecular drugs. This article will critically evaluate vesicular systems for dermal and transdermal delivery of drugs considering both their efficacy and potential mechanisms of action.
Resumo:
Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to identify the effect of burrowing nematodes on the shoots (pseudostem and leaves) of banana plants and to determine whether or not shoot characteristics are associated with plant resistance to nematodes two experiments were conducted in controlled conditions within polytunnels. The banana plants were harvested on three occasions for the measurement of root morphology and biomass. Varieties differed in their resistance to nematodes from resistant (Yg Km5, FHIA 17, FHIA 03) and partly resistant (FHIA 01, FHIA 25) to not resistant (FHIA 23, Williams). Nematodes reduced total plant dry weight at the first harvest in Experiment 1 and by an average of 8.8% in Experiment 2, but did not affect leaf area in either experiment. The ratio of above-ground Weight to total plant weight was reduced from 75% to 72% in nematode-infected plants compared with the control plants for all varieties tested in Experiment 1, but was only reduced in FHIA 25 and FHIA 23 in Experiment 2. Varieties differed in above-ground growth. The FHIA varieties had greater shoot weights and leaf area than YgKm5 and Williams. Overall, resistance to nematodes was associated with the partitioning of a greater proportion of biomass to the roots than to above-ground parts.
Resumo:
This study compared the effect of supplementing maize stover (MS) with cowpea (Vigna unguiculata) haulms or commercial concentrate (CC) on feed intake, nutrient digestibility, live weight gain and carcass yield of male Ethiopian Highland sheep. Two cowpea genotypes, 12688 (forage) and IT96D-774 (dual-purpose), were used. A randomised block design was applied with groups of eight sheep, blocked by weight, allocated to one of six treatments; MS ad libitum either unsupplemented or supplemented daily with 150 or 300g dry matter (DM) of either cowpea or CC. MS contained more neutral detergent fibre (NDF), acid detergent fibre (ADF) and lignin than either cowpeas or CC Crude protein (CP) content of the forage-type cowpeas was higher than either dual-purpose or CC, while MS had the lowest CP content Relative to the negative control group, cowpea at either level significantly (P < 0.01) increased both MS intake and total NDF and lignin. Supplementation significantly (P < 0.01) increased nitrogen (N) intakes relative to the negative control, with N intake for CC and dual-purpose cowpea (high level) being similar to the intakes for cowpeas at 150g. N intake with the forage-type cowpea offered at higher levels was significantly (P < 0.01) greater than the other groups. No significant differences (P > 0.01) in MS intake were identified between cowpeas at either level or CC and, although intake level of CC increased, it did not differ significantly from the negative control group. Supplementation significantly (P < 0.01) improved average daily gain, with the negative control group losing weight over the experimental period, and increased final live weight, carcass cold weight and dressing percentage. Supplementation significantly improved the apparent digestibility of DM, organic matter and NDF, with no significant difference found between cowpeas at either level. N retention was negative for sheep offered only MS, but positive with all supplements, with cowpeas improving N retention to a greater extent than CC. Interestingly, N retention/N intake was higher with cowpeas offered at the lower level suggesting an improvement in utilisation efficiency. The results indicate that the supplementation of MS with cowpea enhanced ruminant production through improvements in digestibility and intake. Further, as production improvements associated with the two levels of supplementation did not differ significantly, it is suggested that where limited quantities of cowpea are available, it may be of greater nutritional benefit to offer smaller quantities over an increased number of animal days.
Resumo:
The effect of adding strobilurins to a triazole (epoxiconazole) fungicide programme on the quality of a range of wheat cultivars was assessed in field experiments in three successive years. Strobilurin was applied at just flag leaf emergence (azoxystrobin) or at the start of stem extension (azoxystrobin or picoxystrobin) and again at flag leaf emergence or at flag leaf emergence and again at ear emergence (azoxystrobin). All strobilurin treatments reduced disease levels, delayed senescence of the flag leaf and consistently increased yields, thousand grain weight and specific weight. Reductions in Hagberg falling number were observed, even by fungicide applications at the start of stem extension, but effects were small compared to the variation among cultivars. Application of fungicide (triazole or strobilurin) before ear emergence increased the amount of blackpoint, but this was partly countered by applying azoxystrobin at ear emergence. The effect of fungicide on protein concentration differed over seasons and cultivar. Where they occurred. small reductions in protein concentration could be compensated for by extra application of nitrogen as foliar urea at anthesis. Foliar urea (40 kg N ha(-1)) applied at anthesis also improved Hagberg failing number and reduced blackpoint in one of the growing seasons. In one season, the effect of foliar urea at anthesis was compared with applications of granular fertiliser at flag leaf emergence. The granular treatment produced grain with more concentrated protein, while the later, foliar application produced higher specific weights. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This study investigated the ovarian function, metabolic profiles and fertility in first lactation Holstein-Friesian dairy cows (mean 305 day milk yield: 7417 +/- 191 kg, n = 37). Reproductive profiles obtained from milk progesterone analysis were categorized into normal (n = 17) and four abnormal profiles (delayed ovulation, DOV1, n = 9; DOV2, n = 2; persistent corpus luteum, PCL1, n = 6; PCL2, n = 4; 1: immediately post-calving, 2: subsequent cycles). Fifty-five percent of cows had abnormal profiles with half of these being categorized as DOV1. Fertility of DOV1 and DOV2 cows was reduced whereas PCL1 and PCL2 cows had similar reproductive competence to normal profile cows. DOV1 animals had higher milk energy values, lower energy balances, lower dry matter intakes (DMI) and greater body weight and body condition score (BCS) losses post-calving than normal profile animals. DOV1 animals also had lower insulin-like growth factor-I (IGF-I) and higher betahydroxybutyrate (BHB) concentrations and tended to have the lower insulin and glucose concentrations in the pre-service period than normal profile cows. All PCL animals had vulval discharges postpartum. Despite this, the DMI, body weight and BCS changes, IGF-I concentrations and fertility of PCL1 animals was similar to normal profile cows. In conclusion, the high prevalence of delayed ovulation post-calving (DOV1) in primiparous high yielding cows lasted long enough (71 +/- 8.3 days) to have a detrimental impact on fertility and was associated with significant physiological changes. This study did not establish any detrimental effects of PCL profiles on fertility or production parameters. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The management of straw residue can be a concern in non-inversion tillage systems where straw tends to be incorporated at shallow depths or left on the soil surface. This can lead to poor crop establishment because straw residue can impede or hinder crop emergence and growth. Small container-based experiments were undertaken using varying amounts of wheat straw residue either incorporated or placed oil the soil surface. The effects on (lays to seedling emergence, percentage emergence, seedling dry-weight and soil temperature using sugar beet and oilseed rape were investigated because these crops often follow wheat in a cropping sequence. The position of the straw residue was found to be the primary factor in reducing crop emergence and growth. Increasing the amount of straw residue (from 3.3 t ha(-1) to 6.7 t ha(-1)) did not show any consistent trends in reducing crop emergence or growth. However, in some instances, results indicated that an interaction between the position and the amount of straw residue Occurred particularly when the straw and seed was placed on the soil surface. Straw placed on the soil surface significantly reduced mean day-time soil temperature by approximately 2.5 degrees C compared to no residue. When the seed and straw was placed on the soil Surface a lack of seed-to-soil contact caused a reduction in emergence by approximately 30% because of the restriction in available moisture that limited the ability for seed imbibition. This trend was reversed when the seed was placed in the soil, but with straw residue still on the soil surface, because the surface straw was likely to reduce moisture evaporation and improved seed-to-soil contact that led to rapid emergence. In general, when straw was mixed in or placed on the soil surface along with the seed, sugar beet and oilseed rape emergence and early growth biomass was significantly restricted by approximately 50% compared to no residue. The consequences of placing seed with or near to straw residue have been shown to cause a restriction in crop establishment. In both oilseed tape and sugar beet, this could lead to a reduction in final crop densities, poor, uneven growth and potentially lower yields that could lower financial margins. Therefore, if farmers are planning to use non-inversion tillage methods for crop establishment, the management and removal of straw residue from near or above the seed is considered important for successful crop establishment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Proteins are commonly identified through enzymatic digestion and generation of short sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such as liquid chromatography and electrophoresis, are often used to fractionate complex protein or peptide mixtures and these separations also provide information on the different species, such as molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-phase chromatography. These are also properties that can be predicted from amino acid sequences derived from genomic sequences and used in protein identification. This chapter reviews recently introduced methods based on retention time prediction to extract information from chromatographic separations and the applications to protein identification in organisms with small and large genomes. Novel data on retention time prediction of posttranslationally modified peptides is also presented.
Resumo:
Extending the season of production and improving the scheduling of ornamental crops are key commercial objectives for nurserymen. In some woody species, the period in which cuttings can be rooted successfully is transient, thus limiting the opportunities for scheduled production. Optimum rooting often occurs in early- to mid-summer coinciding with periods of active shoot growth. The relationship between this shoot activity and root initiation was investigated in Cotinus coggygria 'Royal Purple'. Shoot growth on stock plants was manipulated by altering the photoperiod or light quality. Results indicated there were seasonal effects on rooting, but the importance of shoot activity varied with harvest time. Cuttings harvested in August had high rooting percentages, irrespective of photoperiod, and despite shoot growth terminating in response to the short-day treatment. In contrast, by September, rooting percentage was highest in cuttings from plants under long-days, which had maintained greatest shoot growth activity. Cotinus shoots grown in vitro under 16 h days showed reduced shoot growth and increased rooting competence compared with shoots grown under 8 h days. Growing stock plants under polythene films, which altered the amount and quality of the incident light, influenced the rooting of cuttings harvested in August, but no consistent relationship with shoot activity was apparent. From a practical viewpoint, maintaining shoot activity late in the season may prolong the period for propagation by cuttings; but, from a scientific viewpoint, processes associated with an active shoot apex do not provide a complete explanation of seasonal variation in rooting.
Resumo:
Despite long-standing interest in the forms and mechanisms of density dependence, these are still imperfectly understood. However, in a constant environment an increase in density must reduce per capita resource availability, which in turn leads to reduced survival, fecundity and somatic growth rate. Here we report two population experiments examining the density dependent responses under controlled conditions of an important indicator species, Chironomus riparius. The first experiment was run for 35 weeks and was started at low density with replicate populations being fed three different rations. Increased ration reduced generation time and increased population growth rate (pgr) but had no effect on survival, fecundity and female body weight in the first generation. In the second generation there was a six-fold increase in generation time, presumably due to the greatly reduced per capita resource availability as the estimated initial densities of the second generation were 300 times greater than the first. Juvenile survival to emergence, fecundity, adult body weight and pgr declined by 90%, 75%, 35% and 99%, respectively. These large between-generation effects may have obscured the effects of the threefold variation in ration, as only survival to emergence significantly increased with ration in the second generation. These results suggest that some chironomid larvae survive a reduction in resource availability by growing more slowly. In the ephemeral habitats sometimes occupied by C. riparius, the effects of population density may depend crucially on the longevity of the environment. A second experiment was therefore performed to measure pgr from six different starting densities over an eight-week period. The relationship between pgr and density was concave, viewed from above. At densities above 16 larvae per cm(2), less than 1% of the population emerged and no offspring were produced. Under the conditions of experiment 2 - an 8-week habitat lifespan carrying capacity was estimated as 8 larvae per cm(2).