926 resultados para shanziside methyl ester


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo-[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4″- nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7-[(2-thienyloxoacetyl)amino] -diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0] oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl) amino]- 5-dioxide (7) are also described, together with their total 1H- and 13C-NMR assignments. © 2008 by MDPI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, it was evaluated the susceptibility of prostatic lesions in male adult rats exposed to Di-N-butyl-phthalate during fetal and lactational periods and submitted to MNU plus testosterone carcinogenesis protocol. Pregnant females were distributed into four experimental groups: CN (negative control); CMNU (MNU control); TDBP100 (100 mg/kg of DBP); TDBP500 (500 mg/kg of DBP). Females from the TDBP groups received DBP, by gavage, from gestation day 15 (GD15) to postnatal day 21 (DPN21), while C animals received the vehicle (corn oil). CMNU, TDBP100, and TDBP500 groups received a single intraperitoneal injection of MNU (50 mg/kg) on the sixth postnatal week. After that, testosterone cypionate was administered subcutaneously two times a week (2 mg/kg) for 24 weeks. The animals were euthanized on PND220. Distal segment fragments of the ventral (VP) and dorsolateral prostate (DLP) were fixed and processed for histopathological analysis. Protein extracts from ventral prostate were obtained, and western blotting was performed to AR, ERα, MAPK (ERK1/2), and pan-AKT. Stereological analysis showed an increase in the epithelial compartment in TDBP100 and TDBP500 compared to CN. In general, there was increase in the incidence of inflammation and metaplasia/dysplasia in the DBP-treated groups, mainly in DLP, compared to CN and CMNU. Proliferation index was significant higher in TDBP500 and PIN (prostatic intraepithelial neoplasia) was more frequent in this group compared to CMNU. Western blot assays showed an increase in the expressions of AR and MAPK (ERK1/2) in the TDBP100 compared to CN, and ERα and AKT expressions were higher in the TDBP500 group compared do CN. These results showed that different doses of DBP during prostate organogenesis in Wistar rats could increase the incidence of premalignant lesions in initiated rats inducing distinct biological responses in the adulthood. © 2015 Wiley Periodicals, Inc. Environ Toxicol, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-pot multicomponent synthesis of tetrahydropyridine derivatives between aniline derivatives, benzaldehyde and two different β-keto ester (methyl and ethyl acetoacetate) using niobium pentachloride as catalyst under mild conditions, providing good yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum products leaking from under ground storage tanks have raised concerns regarding the quality of ground water resources, The concerns about the environmental behavior and rate of MTBE as an oxygenated additive prompted this iuvestigation to explore the technical characteristics of MTBE in comparison to ETBF. Evaluation of the existing literature suggests that ETBE has more favorable characteristics than MTBE. Findings in this research suggest that ETBE is a technically sound oxygenated octane enhancer, which can help refiners meet specificatios for cleaner burning gasoline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triglycerides are reacted in a liquid phase reaction with methanol and a homogeneous basic catalyst. The reaction yields a spatially separated two phase result with an upper located non-polar phase consisting principally of non-polar methyl esters and a lower located phase consisting principally of glycerol and residual methyl esters. The glycerol phase is passed through a strong cationic ion exchanger to remove anions, resulting in a neutral product which is flashed to remove methanol and which is reacted with isobutylene in the presence of a strong acid catalyst to produce glycerol ethers. The glycerol ethers are then added back to the upper located methyl ethyl ester phase to provide an improved biodiesel fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context and objective: The massive production of reactive oxygen species by neutrophils during inflammation may cause damage to tissues. Flavonoids act as antioxidants and have anti-inflammatory effects. In this study, liposomes loaded with these compounds were evaluated as potential antioxidant carriers, in attempt to overcome their poor solubility and stability. Materials and methods: Liposomes containing quercetin, myricetin, kaempferol or galangin were prepared by the ethanol injection method and analyzed as inhibitors of immune complex (IC) and phorbol ester-stimulated neutrophil oxidative metabolism by luminol (CLlum) and lucigenin-enhanced (CLluc) chemiluminescence (CL) assays. The mechanisms involved this activity of liposomal flavonoids, such as cytotoxicity and superoxide anion scavenging capacity, and their effect on phagocytosis of ICs were also investigated. Results and discussion: The results showed that the inhibitory effect of liposomal flavonoids on CLlum and CLluc is inversely related to the number of hydroxyl groups in the flavonoid B ring. Moreover, phagocytosis of liposomes by neutrophils does not seem to necessarily promote such activity, as the liposomal flavonoids are also able to reduce CL when the cells are pretreated with cytochalasin B. Under assessed conditions, the antioxidant liposomes are not toxic to the human neutrophils and do not interfere with IC-induced phagocytosis. Conclusion: The studied liposomes can be suitable carriers of flavonoids and be an alternative for the treatment of diseases in which a massive oxidative metabolism of neutrophils is involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.