981 resultados para serum insulin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of post-translational modifications of proteins in biological samples often requires access to preanalytical purification and concentration methods. In the purification step high or low molecular weight substances can be removed by size exclusion filters, and high abundant proteins can be removed, or low abundant proteins can be enriched, by specific capturing tools. In this paper is described the experience and results obtained with a recently emerged and easy-to-use affinity purification kit for enrichment of the low amounts of EPO found in urine and plasma specimens. The kit can be used as a pre-step in the EPO doping control procedure, as an alternative to the commonly used ultrafiltration, for detecting aberrantly glycosylated isoforms. The commercially available affinity purification kit contains small disposable anti-EPO monolith columns (6 ?L volume, Ø7 mm, length 0.15 mm) together with all required buffers. A 24-channel vacuum manifold was used for simultaneous processing of samples. The column concentrated EPO from 20 mL urine down to 55 ?L eluate with a concentration factor of 240 times, while roughly 99.7% of non-relevant urine proteins were removed. The recoveries of Neorecormon (epoetin beta), and the EPO analogues Aranesp and Mircera applied to buffer were high, 76%, 67% and 57%, respectively. The recovery of endogenous EPO from human urine was 65%. High recoveries were also obtained when purifying human, mouse and equine EPO from serum, and human EPO from cerebrospinal fluid. Evaluation with the accredited EPO doping control method based on isoelectric focusing (IEF) showed that the affinity purification procedure did not change the isoform distribution for rhEPO, Aranesp, Mircera or endogenous EPO. The kit should be particularly useful for applications in which it is essential to avoid carry-over effects, a problem commonly encountered with conventional particle-based affinity columns. The encouraging results with EPO propose that similar affinity monoliths, with the appropriate antibodies, should constitute useful tools for general applications in sample preparation, not only for doping control of EPO and other hormones such as growth hormone and insulin but also for the study of post-translational modifications of other low abundance proteins in biological and clinical research, and for sample preparation prior to in vitro diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Tenofovir (TDF) use has been associated with proximal renal tubulopathy, reduced calculated glomerular filtration rates (cGFR) and losses in bone mineral density. Bone resorption could result in a compensatory osteoblast activation indicated by an increase in serum alkaline phosphatase (sAP). A few small studies have reported a positive correlation between renal phosphate losses, increased bone turnover and sAP. METHODS: We analysed sAP dynamics in patients initiating (n = 657), reinitiating (n = 361) and discontinuing (n = 73) combined antiretroviral therapy with and without TDF and assessed correlations with clinical and epidemiological parameters. RESULTS: TDF use was associated with a significant increase of sAP from a median of 74 U/I (interquartile range 60-98) to a plateau of 99 U/I (82-123) after 6 months (P < 0.0001), with a prompt return to baseline upon TDF discontinuation. No change occurred in TDF-sparing regimes. Univariable and multivariable linear regression analyses revealed a positive correlation between sAP and TDF use (P < or = 0.003), but no correlation with baseline cGFR, TDF-related cGFR reduction, changes in serum alanine aminotransferase (sALT) or active hepatitis C. CONCLUSIONS: We document a highly significant association between TDF use and increased sAP in a large observational cohort. The lack of correlation between TDF use and sALT suggests that the increase in sAP is because of the bone isoenzyme and indicates stimulated bone turnover. This finding, together with published data on TDF-related renal phosphate losses, this finding raises concerns that TDF use could result in osteomalacia with a loss in bone mineral density at least in a subset of patients. This potentially severe long-term toxicity should be addressed in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Circulating 25-hydroxyvitamin D [25(OH)D] concentration is inversely associated with peripheral arterial disease and hypertension. Vascular remodeling may play a role in this association, however, data relating vitamin D level to specific remodeling biomarkers among ESRD patients is sparse. We tested whether 25(OH)D concentration is associated with markers of vascular remodeling and inflammation in African American ESRD patients.METHODS: We conducted a cross-sectional study among ESRD patients receiving maintenance hemodialysis within Emory University-affiliated outpatient hemodialysis units. Demographic, clinical and dialysis treatment data were collected via direct patient interview and review of patients records at the time of enrollment, and each patient gave blood samples. Associations between 25(OH)D and biomarker concentrations were estimated in univariate analyses using Pearson's correlation coefficients and in multivariate analyses using linear regression models. 25(OH) D concentration was entered in multivariate linear regression models as a continuous variable and binary variable (<15 ng/ml and =15 ng/ml). Adjusted estimate concentrations of biomarkers were compared between 25(OH) D groups using analysis of variance (ANOVA). Finally, results were stratified by vascular access type.RESULTS: Among 91 patients, mean (standard deviation) 25(OH)D concentration was 18.8 (9.6) ng/ml, and was low (<15 ng/ml) in 43% of patients. In univariate analyses, low 25(OH) D was associated with lower serum calcium, higher serum phosphorus, and higher LDL concentrations. 25(OH) D concentration was inversely correlated with MMP-9 concentration (r = -0.29, p = 0.004). In multivariate analyses, MMP-9 concentration remained negatively associated with 25(OH) D concentration (P = 0.03) and anti-inflammatory IL-10 concentration positively correlated with 25(OH) D concentration (P = 0.04).CONCLUSIONS: Plasma MMP-9 and circulating 25(OH) D concentrations are significantly and inversely associated among ESRD patients. This finding may suggest a potential mechanism by which low circulating 25(OH) D functions as a cardiovascular risk factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systemic response to injury or infection is often accompanied by significant alterations in host metabolism and glucose homeostasis. Within the liver, these changes include a decrease in glycogenesis and an increase in gluconeogenesis, and in peripheral tissues, the development of insulin resistance and the increased utilization of glucose by non-insulin-dependent pathways. Depending on the severity and the duration of the response, both hyper- and hypoglycemia can ensue and each can become a clinically important manifestation of the systemic inflammatory response. The protein known as macrophage migration inhibitory factor (MIF) has been identified recently to play a central role in host immunity and to regulate glucocorticoid effects on the immune and inflammatory systems. MIF is released in vivo from activated immune cells as well as by the anterior pituitary gland upon stimulation of the hypothalamic-pituitary-adrenal axis. MIF also has been found to be secreted together with insulin from the pancreatic beta-cells and to act as an autocrine factor to stimulate insulin release. Since circulating MIF levels are elevated during stress or systemic inflammatory processes, this protein may play a central role in the control of insulin secretion during various disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic goal of vitamin D: optimal serum level and dose requirements Results of randomized controlled trials and meta-analyses investigating the effect of vitamin D supplementation on falls and fractures are inconsistent. The optimal serum level 25(OH) vitamin D for musculoskeletal and global health is > or = 30 ng/ml (75 nmol/l) for some experts and 20 ng/ml (50 nmol/l) for some others. A daily dose of vitamin D is better than high intermittent doses to reach this goal. High dose once-yearly vitamin D therapy may increase the incidence of fractures and falls. High serum level of vitamin D is probably harmful for the musculoskeletal system and health at large. The optimal benefits for musculoskeletal health are obtained with an 800 UI daily dose and a serum level of near 30 ng/ml (75 nmol/l).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: The molecular mechanisms of obesity-related insulin resistance are incompletely understood. Macrophages accumulate in adipose tissue of obese individuals. In obesity, monocyte chemoattractant protein-1 (MCP-1), a key chemokine in the process of macrophage accumulation, is overexpressed in adipose tissue. MCP-1 is an insulin-responsive gene that continues to respond to exogenous insulin in insulin-resistant adipocytes and mice. MCP-1 decreases insulin-stimulated glucose uptake into adipocytes. The A-2518G polymorphism in the distal regulatory region of MCP-1 may regulate gene expression. The aim of this study was to investigate the impact of this gene polymorphism on insulin resistance. METHODS: We genotyped the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort ( n=3307). Insulin resistance, estimated by homeostasis model assessment, and Type 2 diabetes were diagnosed in 803 and 635 patients respectively. RESULTS: Univariate analysis revealed that plasma MCP-1 levels were significantly and positively correlated with WHR ( p=0.011), insulin resistance ( p=0.0097) and diabetes ( p<0.0001). Presence of the MCP-1 G-2518 allele was associated with decreased plasma MCP-1 ( p=0.017), a decreased prevalence of insulin resistance (odds ratio [OR]=0.82, 95% CI: 0.70-0.97, p=0.021) and a decreased prevalence of diabetes (OR=0.80, 95% CI: 0.67-0.96, p=0.014). In multivariate analysis, the G allele retained statistical significance as a negative predictor of insulin resistance (OR=0.78, 95% CI: 0.65-0.93, p=0.0060) and diabetes (OR=0.80, 95% CI: 0.66-0.96, p=0.018). CONCLUSIONS/INTERPRETATION: In a large cohort of Caucasians, the MCP-1 G-2518 gene variant was significantly and negatively correlated with plasma MCP-1 levels and the prevalence of insulin resistance and Type 2 diabetes. These results add to recent evidence supporting a role for MCP-1 in pathologies associated with hyperinsulinaemia.