908 resultados para semantic textual similarity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La ricerca nel campo del cultural heritage management ha adottato negli ultimi decenni le tecnologie web quali strumenti privilegiati per stabilire i nuovi approcci e indirizzi nella valorizzazione della conoscenza. Questa tesi si colloca nell'ambito interdisciplinare tra le scienze umanistiche e informatiche e si fonda sulla consapevolezza del reciproco arricchimento che può derivare dal continuo confronto, le une disponendo di mezzi più espressivi e popolari per divulgare il proprio patrimonio e le altre usufruendo di “materia prima” autorevole (ossia dati strutturati di qualità e alto livello di fiducia) in fase di sperimentazione. Lo studio dei punti di tangenza tra le discipline muove da due ambiti precisi, ovvero le applicazioni informatiche nel campo dell'archivistica e gli sviluppi del semantic web nel settore delle digital humanities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro si occupa di fare una rassegna esaustiva di alcuni Linked Open Dataset nel contesto delle pubblicazioni scientifiche, cercando di inquadrare la loro eterogeneità ed identificando i principali pregi e difetti di ciascuno. Inoltre, descriviamo il nostro prototipo GReAT (Giorgi's Redundant Authors Tool), creato per il corretto riconoscimento e disambiguazione degli autori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'indagine ha riguardato il profilo del vento nei primi 30 metri dello strato limite atmosferico stabile nell'ambito della teoria di similarità locale. Ad oggi, diversi esperimenti hanno confermato la validità della teoria per strati-limite su terreni livellati e superfici omogenee. Tali condizioni ideali sono però infrequenti nella realtà ed è perciò importante capire quali siano i limiti della similarità locale per strati-limite su terreni complessi e superfici disomogenee. Entrambe le condizioni sono presenti a Ny-Alesund (Svalbard, Norvegia) dove il Consiglio Nazionale delle Ricerche (CNR), nel 2009, ha installato una torre di 30 m, la Amudsen-Nobile Climate Change Tower (CCT), per lo studio dello strato-limite artico. Il lavoro di tesi ha riguardato misure di vento e turbolenza acquisite sulla CCT da maggio 2012 a maggio 2014. Il confronto tra le velocità del vento misurate dagli anemometri installati sulla CCT, ha rivelato criticità nel dato sonico manifestatesi con sovrastime sistematiche e maggiore erraticità rispetto alle misure provenienti dagli anemometri a elica. Un test condotto fra diversi metodi per il calcolo dei gradienti verticali della velocità del vento ha rivelato scarsa sensibilità dei risultati ottenuti al particolare metodo utilizzato. Lo studio ha riguardato i gradienti verticali adimensionali della velocità del vento nei primi 30-m dello strato limite stabile. Deviazioni significative tra i tra le osservazioni e i valori predetti dalla similarità locale sono state osservate in particolare per i livelli più distanti dal suolo e per valori crescenti del parametro di stabilità z/L (L, lunghezza di Obukhov locale). In particolare, si sono osservati gradienti adimensionali inferiori a quelli predetti dalle più usate relazioni di flusso-gradiente. Tali deviazioni, presenti perlopiù per z/L>0.1, sono state associate ad un effetto di accentuazione della turbolenza da parte delle irregolarità del terreno. Per condizioni meno stabili, z/L<0.1, scarti positivi tra i gradienti osservati e quelli attesi sono stati attribuiti alla formazione di strati limite interni in condizioni di vento dal mare verso la costa. Sono stati proposti diversi metodi per la stima dell'effetto della self-correlazione nella derivazione delle relazioni di flusso-gradiente, dovuta alla condivisione della variabile u*. La formula per il coefficiente lineare di self correlazione e le sue distribuzioni di probabilità empiriche sono state derivate e hanno permesso di stimare il livello di self-correlazione presente nel dataset considerato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software visualizations can provide a concise overview of a complex software system. Unfortunately, as software has no physical shape, there is no `natural' mapping of software to a two-dimensional space. As a consequence most visualizations tend to use a layout in which position and distance have no meaning, and consequently layout typically diverges from one visualization to another. We propose an approach to consistent layout for software visualization, called Software Cartography, in which the position of a software artifact reflects its vocabulary, and distance corresponds to similarity of vocabulary. We use Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows us to develop a variety of thematic software maps that express very different aspects of software while making it easy to compare them. The approach is especially suitable for comparing views of evolving software, as the vocabulary of software artifacts tends to be stable over time. We present a prototype implementation of Software Cartography, and illustrate its use with practical examples from numerous open-source case studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the functional organization of semantic memory for music by comparing priming across familiar songs both within modalities (Experiment 1, tune to tune; Experiment 3, category label to lyrics) and across modalities (Experiment 2, category label to tune; Experiment 4, tune to lyrics). Participants judged whether or not the target tune or lyrics were real (akin to lexical decision tasks). We found significant priming, analogous to linguistic associative-priming effects, in reaction times for related primes as compared to unrelated primes, but primarily for within-modality comparisons. Reaction times to tunes (e.g., "Silent Night") were faster following related tunes ("Deck the Hall") than following unrelated tunes ("God Bless America"). However, a category label (e.g., Christmas) did not prime tunes from within that category. Lyrics were primed by a related category label, but not by a related tune. These results support the conceptual organization of music in semantic memory, but with potentially weaker associations across modalities.