983 resultados para radicals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The oxidative stress theory of ageing predicts that animals living longer will have less cumulative oxidative damage together with structural characteristics that make them more resistant to oxidative damage itself.
2. Although a general relationship between body size, metabolism and longevity does not exist in marine invertebrates, they are generally characterized by low rates of metabolism and reactive oxygen species (ROS) formation associated with lower antioxidant enzyme activities compared to vertebrates.
3. Birds and mammals have very similar size-affected metabolic rates and their metabolic intensity explains only some of the variation in maximum lifespan potential (MLSP).Within each class, smaller animals have higher rates of metabolism and ROS production and membranes that are more susceptible to oxidative damage and autocatalytic propagation of free radicals than larger ones.
4. Although the high variation in life-history strategies is accompanied by substantial variation in MLSP, there is a consistent positive correlation between rates of ROS formation and antioxidant levels among most animals examined so far for these traits. The consensus of these studies is that ROS and antioxidant levels are inversely related to MLSP.
5. The lack of a clear stoichiometric relation between variables contributing to oxidative stress limits our capacity to infer longevity consequences from measures of pro-oxidant or antioxidant status among or within species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-alcoholic Steatohepatitis (NASH) is a chronic disease that results from accumulation of fat within the liver that subsequently stimulates free radicals to damage the cells of the liver. Cocoa is a rich source of antioxidants and it was found that its consumption could slow the development of NASH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen allergy has been found in 80–90% of childhood asthmatics and 40–50% of adult-onset asthmatics. Despite the high prevalence of atopy in asthmatics, a causal relationship between the allergic response and asthma has not been clearly established. Pollen grains are too large to penetrate the small airways where asthma occurs. Yet pollen cytoplasmic fragments are respirable and are likely correlated with the asthmatic response in allergic asthmatics. In this review, we outline the mechanism of pollen fragmentation and possible pathophysiology of pollen fragment-induced asthma. Pollen grains rupture within the male flowers and emit cytoplasmic debris when winds or other disturbances disperse the pollen. Peak levels of grass and birch pollen allergens in the atmosphere correlated with the occurrence of moist weather conditions during the flowering period. Thunderstorm asthma epidemics may be triggered by grass pollen rupture in the atmosphere and the entrainment of respirable-sized particles in the outflows of air masses at ground level. Pollen contains nicotinamide adenine dinucleotide phosphate (reduced) oxidases and bioactive lipid mediators which likely contribute to the inflammatory response. Several studies have examined synergistic effects and enhanced immune response from interaction in the atmosphere, or from co-deposition in the airways, of pollen allergens, endogenous pro-inflammatory agents, and the particulate and gaseous fraction of combustion products. Pollen and fungal fragments also contain compounds that can suppress reactive oxidants and quench free radicals. It is important to know more about how these substances interact to potentially enhance, or even ameliorate, allergic asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antioxidants are produced within the body or obtained from dietary sources. Their main role is to counter the detrimental effects of free radicals, but they are also essential for numerous metabolic processes. This thesis describes novel detection methods for the determination of antioxidants in plant based materials and physiological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study expands the knowledge of the mechanisms that cause wool to yellow. It established that metals in wool influence the production of free radicals and the extent of degradation and yellowing of photo-irradiated wool. It also examined the relationship between the colour and trace metal content of fleece wool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results from the thesis confirm that canola oil ingestion shortens the lifespan of stroke prone rats. This life shortening effect associated with canola oil may be due to negative changes in the level of free radicals, antioxidants and blood fats. The situation is even worse when canola oil and salt are combined in the diet as blood vessel function is impaired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene oxide (GO) possesses unusual electronic and mechanical properties, including the ability to stabilize graphene radicals (GRs). However, controlled generation of GRs remains a challenge for applications requiring large-scale production. In this study, we demonstrate controlled production of GRs by UVB irradiation of GO solutions. Electron paramagnetic resonance spectroscopy of GO solutions revealed a dose-dependent exponential growth in radical production as a function of UVB exposure time. The GRs were air-stable over a long period, both in the solution state and in freeze-dried powders, suggesting they are graphene-based phenalenyl-like radicals. The redox activity of GRs was demonstrated by their ability to oxidize the chromophore 3,5,3?,5?- tetramethylbenzidine, with oxidation capacity of GO increasing with GR content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Though ZnO nanoparticles (NPs) are an excellent UV absorber, their photocatalytic activity greatly limits the application areas of these particles. Under sunlight exposure, ZnO NPs used as a UV absorber can accelerate the wool yellowing process by generating free radicals. To reduce this photocatalysis effect, a physical barrier has been fabricated by coating the ZnO NPs with a silica layer (ZnO@SiO2), hence providing good UV-shielding with low photocatalytic activity. The structure and optical properties of ZnO and ZnO@SiO2 NPs were characterized by transmission electron microscope (TEM) and UV–Vis spectrum. The photocatalytic activity of ZnO and ZnO@SiO2 NPs was evaluated by photo-degradation of Rhodamine B. The ZnO and ZnO@SiO2 NPs were applied to knitted wool fabrics using the dip coating method. The treated wool fabrics were characterized by a scanning electron microscope (SEM) and the photoyellowing level of treated fabrics after exposure under simulated sunlight was evaluated by a Datacolor Spectraflash spectrophotometer. The ZnO@SiO2 NPs demonstrated excellent protection of wool against photoyellowing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NO plays diverse roles in physiological and pathological processes, occasionally resulting in opposing effects, particularly in cells subjected to oxidative stress. NO mostly protects eukaryotes against oxidative injury, but was demonstrated to kill prokaryotes synergistically with H2O2. This could be a promising therapeutic avenue. However, recent conflicting findings were reported describing dramatic protective activity of NO. The previous studies of NO effects on prokaryotes applied a transient oxidative stress while arbitrarily checking the residual bacterial viability after 30 or 60min and ignoring the process kinetics. If NO-induced synergy and the oxidative stress are time-dependent, the elucidation of the cell killing kinetics is essential, particularly for survival curves exhibiting a "shoulder" sometimes reflecting sublethal damage as in the linear-quadratic survival models. We studied the kinetics of NO synergic effects on H2O2-induced killing of microbial pathogens. A synergic pro-oxidative activity toward gram-negative and gram-positive cells is demonstrated even at sub-μM/min flux of NO. For certain strains, the synergic effect progressively increased with the duration of cell exposure, and the linear-quadratic survival model best fit the observed survival data. In contrast to the failure of SOD to affect the bactericidal process, nitroxide SOD mimics abrogated the pro-oxidative synergy of NO/H2O2. These cell-permeative antioxidants, which hardly react with diamagnetic species and react neither with NO nor with H2O2, can detoxify redox-active transition metals and catalytically remove intracellular superoxide and nitrogen-derived reactive species such as (•)NO2 or peroxynitrite. The possible mechanism underlying the bactericidal NO synergy under oxidative stress and the potential therapeutic gain are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56 ± 0.04) yields the respective nitroxide radical (pKa=9.1 ± 0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the radiosensitizing effect of SAHA. Pretreatment with SAHA blocked A549 cells at the G1 stage of the cell cycle and upregulated γ-H2AX after irradiation. Overall, we conclude that SAHA enhances tumor radioresponse by multiple mechanisms that might also involve its ability to serve as a NO donor under oxidizing environments.