920 resultados para radial load
Resumo:
A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.
Resumo:
The radial vaneless diffuser, though comparatively simple in terms of geometry, poses a significant challenge in obtaining an accurate 1-D based performance prediction due to the swirling, unsteady and distorted nature of the flow field. Turbocharger compressors specifically, with the ever increasing focus on achieving a wide operating range, have been recognised to operate with significant regions of spanwise separated flow, particularly at off-design conditions.
Using a combination of single passage Computational Fluid Dynamics (CFD) simulations and extensive gas stand test data for three geometries, the current study aims to evaluate the onset and impact of spanwise aerodynamic blockage in radial vaneless diffusers, and how the extent of the blocked region throughout the diffuser varies with both geometry and operating condition. Having analysed the governing performance parameters and flow phenomena, a novel 1-D modelling method is presented and compared to an existing baseline method as well as test data to quantify the improvement in prediction accuracy achieved.
Resumo:
Off-design performance now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. In this region of operation the U/C value will be low and the rotor will experience high values of positive incidence at the inlet. The positive incidence causes flow to separate on the suction surface and produces high blade loading at inlet, which drives tip leakage. A CFD analysis has been carried out on a number of automotive turbines utilizing non-radial fibred blading. To help improve secondary flows yet meet stress requirements a number of designs have been investigated. The inlet blade angle has been modified in a number of ways. Firstly, the blading has been adjusted as to provide a constant back swept angle in the span wise direction. Using the results of the constant back swept blading studies, the back swept blade angle was then varied in the span wise direction. In addition to this, in an attempt to avoid an increase in stress, the effect of varying the leading edge profile of the blade was investigated. It has been seen that off-design performance is improved by implementing back swept blading at the inlet. Varying the inlet angle in the span wise direction provided more freedom for meeting stress requirements and reduces the negative impact on blade performance at the design point. The blade leading edge profile was seen to offer small improvements during off-design operation with minimal effects on stress within the rotor. However, due to the more pointed nature of the leading edge, the rotor was less tolerant to flow misalignment at the design point.
Resumo:
Inbreeding depression is most pronounced for traits closely associated with fitness. The traditional explanation is that natural selection eliminates deleterious mutations with additive or dominant effects more effectively than recessive mutations, leading to directional dominance for traits subject to strong directional selection. Here we report the unexpected finding that, in the butterfly Bicyclus anynana, male sterility contributes disproportionately to inbreeding depression for fitness (complete sterility in about half the sons from brother-sister matings), while female fertility is insensitive to inbreeding. The contrast between the sexes for functionally equivalent traits is inconsistent with standard selection arguments, and suggests that trait-specific developmental properties and cryptic selection play crucial roles in shaping genetic architecture. There is evidence that spermatogenesis is less developmentally stable than oogenesis, though the unusually high male fertility load in B. anynana additionally suggests the operation of complex selection maintaining male sterility recessives. Analysis of the precise causes of inbreeding depression will be needed to generate a model that reliably explains variation in directional dominance and reconciles the gap between observed and expected genetic loads carried by populations. This challenging evolutionary puzzle should stimulate work on the occurrence and causes of sex differences in fertility load.
Resumo:
Consumption of milk and dairy products is considered one of the main routes of human exposure to Mycobacterium avium subsp. paratuberculosis (MAP). Quantitative data on MAP load in raw cows’ milk are essential starting point for exposure assessment. Our study provides this information on a regional scale, estimating the load of MAP in bulk tank milk (BTM) produced in Emilia-Romagna region (Italy). The survey was carried out on 2934 BTM samples (88.6% of the farms herein present) using two different target sequences for qPCR (f57 and IS900). Data about the performances of both qPCRs are also reported, highlighting the superior sensitivity of IS900-qPCR. Seven hundred and eighty-nine samples tested MAP-positive (apparent prevalence 26.9%) by IS900 qPCR. However, only 90 of these samples were quantifiable by qPCR. The quantifiable samples contained a median load of 32.4 MAP cells mL−1 (and maximum load of 1424 MAP cells mL−1). This study has shown that a small proportion (3.1%) of BTM samples from Emilia-Romagna region contained MAP in excess of the limit of detection (1.5 × 101 MAP cells mL−1), indicating low potential exposure for consumers if the milk subsequently undergoes pasteurization or if it is destined to typical hard cheese production.
Resumo:
Objective: Guidelines recommend the creation of a wrist radiocephalic arteriovenous fistula (RAVF) as initial hemodialysis vascular access. This study explored the potential of preoperative ultrasound vessel measurements to predict AVF failure to mature (FTM) in a cohort of patients with end-stage renal disease in Northern Ireland
.Methods: A retrospective analysis was performed of all patients who had preoperative ultrasound mapping of upper limb blood vessels carried out from August 2011 to December 2014 and whose AVF reached a functional outcome by March 2015.
Results: There were 152 patients (97% white) who had ultrasound mapping andan AVF functional outcome recorded; 80 (54%) had an upper arm AVF created, and 69 (46%) had a RAVF formed. Logistic regression revealed that female gender (odds ratio [OR], 2.5; 95% confidence interval [CI], 1.12-5.55; P = .025), minimum venous diameter (OR, 0.6; 95% CI, 0.39-0.95; P = .029), and RAVF (OR, 0.4; 95% CI, 0.18-0.89; P = .026) were associated with FTM. On subgroup analysis of the RAVF group, RAVFs with an arterial volume flow <50 mL/min were seven times as likely to fail as RAVFs with higher volume flows (OR, 7.0; 95% CI, 2.35-20.87; P < .001).
Conclusions: In this cohort, a radial artery flow rate <50 mL/min was associated with a sevenfold increased risk of FTM in RAVF, which to our knowledge has not been previously reported in the literature. Preoperative ultrasound mapping adds objective assessment in the clinical prediction of AVF FTM.
Resumo:
This study demonstrates the feasibility of using quantitative real time PCR to measure genomic bacterial load in the nasopharynx of children with invasive meningococcal disease and shows that these loads are exceptionally high (median 6.6 x 105 (Range 1.2 x 105 to 1.1 x 108) genome copies of Neisseria meningitidis per swab).
Resumo:
The paper describes the use of radial basis function neural networks with Gaussian basis functions to classify incomplete feature vectors. The method uses the fact that any marginal distribution of a Gaussian distribution can be determined from the mean vector and covariance matrix of the joint distribution.
Resumo:
This paper presents the application of the on-load exciting current Extended Park's Vector Approach for diagnosing incipient turn-to-turn winding faults in operating power transformers. Experimental and simulated test results demonstrate the effectiveness of the proposed technique, which is based on the spectral analysis of the AC component of the on-load exciting current Park's Vector modulus.
Resumo:
This paper presents the development of a new approach for diagnosing the occurrence of inter-turn short-circuits in the windings of three-phase transformers, which is based on the on-line monitoring of the on-load exciting current Park's Vector patterns. Experimental and simulated results demonstrate the effectiveness of the proposed technique for detecting winding inter-turn insulation faults in operating three-phase transformers.
Resumo:
This paper presents the application of the on-load exciting current Park's Vector Approach for diagnosing permanent and intermittent turn-to-turn winding faults in operating power transformers. First, an experimental investigation of the behaviour of the transformer under the occurrence of both permanent and intermittent winding faults is presented. Finally, experimental test results demonstrate the effectiveness of the proposed diagnostic technique, which is based on the on-line monitoring of the on-load exciting current Park's Vector patterns.