990 resultados para protein NMR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that Lyt(2+) cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2K(d)-restricted CTL and to examine their cross-recognition of West Wile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2K(d) binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying the weak binding affinities between carbohydrates and proteins has been a central theme in sustained efforts to uncover intricate details of this class of biomolecular interaction. The amphiphilic nature of most carbohydrates, the competing nature of the surrounding water molecules to a given protein receptor site and the receptor binding site characteristics led to the realization that carbohydrates are required to exert favorable interactions, primarily through clustering of the ligands. The clustering of sugar ligands has been augmented using many different innovative molecular scaffolds. The synthesis of clustered ligands also facilitates fine-tuning of the spatial and topological proximities between the ligands, so as to allow the identification of optimal molecular features for significant binding affinity enhancements. The kinetic and thermodynamic parameters have been delineated in many instances, thereby allowing an ability to correlate the multivalent presentation and the observed ligand-receptor interaction profiles. This critical review presents various multivalent ligands, synthetic and semisynthetic, and mechanisms by which the weak binding affinities are overcome, and the ligand-receptor complexation leads to significantly enhanced binding affinities (157 references).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) spectroscopy provides us with many means to study biological macromolecules in solution. Proteins in particular are the most intriguing targets for NMR studies. Protein functions are usually ascribed to specific three-dimensional structures but more recently tails, long loops and non-structural polypeptides have also been shown to be biologically active. Examples include prions, -synuclein, amylin and the NEF HIV-protein. However, conformational preferences in coil-like molecules are difficult to study by traditional methods. Residual dipolar couplings (RDCs) have opened up new opportunities; however their analysis is not trivial. Here we show how to interpret RDCs from these weakly structured molecules. The most notable residual dipolar couplings arise from steric obstruction effects. In dilute liquid crystalline media as well as in anisotropic gels polypeptides encounter nematogens. The shape of a polypeptide conformation limits the encounter with the nematogen. The most elongated conformations may come closest whereas the most compact remain furthest away. As a result there is slightly more room in the solution for the extended than for the compact conformations. This conformation-dependent concentration effect leads to a bias in the measured data. The measured values are not arithmetic averages but essentially weighted averages over conformations. The overall effect can be calculated for random flight chains and simulated for more realistic molecular models. Earlier there was an implicit thought that weakly structured or non-structural molecules would not yield to any observable residual dipolar couplings. However, in the pioneering study by Shortle and Ackerman RDCs were clearly observed. We repeated the study for urea-denatured protein at high temperature and also observed indisputably RDCs. This was very convincing to us but we could not possibly accept the proposed reason for the non-zero RDCs, namely that there would be some residual structure left in the protein that to our understanding was fully denatured. We proceeded to gain understanding via simulations and elementary experiments. In measurements we used simple homopolymers with only two labelled residues and we simulated the data to learn more about the origin of RDCs. We realized that RDCs depend on the position of the residue as well as on the length of the polypeptide. Investigations resulted in a theoretical model for RDCs from coil-like molecules. Later we extended the studies by molecular dynamics. Somewhat surprisingly the effects are small for non-structured molecules whereas the bias may be large for a small compact protein. All in all the work gave clear and unambiguous results on how to interpret RDCs as structural and dynamic parameters of weakly structured proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the possibility of treating Heymann's Nephritis (HN) by destroying antibody producing cells by targetting a toxin, gelonin - conjugated to gp330, the renal brush border antigen. HN was induced in rats by immunizing them with purified gp330. The gelonin-gp330 conjugate was administered 12 days after the antigenic challenge. Serum was screened for circulating antibodies. Proteinurea was estimated. The gp330-gelonin conjugate-treated animals had a circulating antibody titre in the serum much lower than that of diseased (untreated) animals. Proteinurea seen in diseased animals was not observed in treated animals. This work suggests the possibility of using a toxin-antigen conjugate for immunomodulating antibody mediated autoimmune renal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC. Methodology/Principal Findings: BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the similar to 29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5'AMP liganded forms. This was confirmed by molecular weigt profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5'AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5'AMP. Docking simulations also suggest that bio-5'AMP hydrogen bonds to the conserved `GRGRRG' sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The K-m for BCCP was similar to 5.2 mu M and similar to 420 nM for biotin. MtBPL has low affinity (K-b = 1.06 x 10(-6) M) for biotin relative to EcBirA but their K-m are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5'AMP by EcBirA is channeled for its repressor activity. Conclusions/Significance: These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results: Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions: Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometric and structural constraints greatly restrict the selection of folds adapted by protein backbones, and yet, folded proteins show an astounding diversity in functionality. For structure to have any bearing on function, it is thus imperative that, apart from the protein backbone, other tunable degrees of freedom be accountable. Here, we focus on side-chain interactions, which non-covalently link amino acids in folded proteins to form a network structure. At a coarse-grained level, we show that the network conforms remarkably well to realizations of random graphs and displays associated percolation behavior. Thus, within the rigid framework of the protein backbone that restricts the structure space, the side-chain interactions exhibit an element of randomness, which account for the functional flexibility and diversity shown by proteins. However, at a finer level, the network exhibits deviations from these random graphs which, as we demonstrate for a few specific examples, reflect the intrinsic uniqueness in the structure and stability, and perhaps specificity in the functioning of biological proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.