699 resultados para prefrontal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Genetic, neuroimaging, and molecular neurobiological evidence support the hypothesis that the disconnectivity syndrome in schizophrenia (SZ) could arise from failures of saltatory conduction and abnormalities at the nodes of Ranvier (NOR) interface where myelin and axons interact. Objective: To identify abnormalities in the expression of oligodendroglial genes and proteins that participate in the formation, maintenance, and integrity of the NOR in SZ. Design: The messenger RNA (mRNA) expression levels of multiple NOR genes were quantified in 2 independent postmortem brain cohorts of individuals with SZ, and generalizability to protein expression was confirmed. The effect of the ANK3 genotype on the mRNA expression level was tested in postmortem human brain. Case-control analysis tested the association of the ANK3 genotype with SZ. The ANK3 genotype's influence on cognitive task performance and functional magnetic resonance imaging activation was tested in 2 independent cohorts of healthy individuals. Setting: Research hospital. Patients: Postmortem samples from patients with SZ and healthy controls were used for the brain expression study (n=46) and the case-control analysis (n=272). Healthy white men and women participated in the cognitive (n=513) and neuroimaging (n=52) studies. Main Outcome Measures: The mRNA and protein levels in postmortem brain samples, genetic association with schizophrenia, cognitive performance, and blood oxygenation level-dependent functional magnetic resonance imaging. Results: The mRNA expression of multiple NOR genes was decreased in schizophrenia. The ANK3 rs9804190 C allele was associated with lower ANK3 mRNA expression levels, higher risk for SZ in the case-control cohort, and poorer working memory and executive function performance and increased prefrontal activation during a working memory task in healthy individuals. Conclusions: These results point to abnormalities in the expression of genes and protein associated with the integrity of the NOR and suggest them as substrates for the disconnectivity syndrome in SZ. The association of ANK3 with lower brain mRNA expression levels implicates a molecular mechanism for its genetic, clinical, and cognitive associations with SZ. ©2012 American Medical Association. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with Bipolar Disorder (BD) perform poorly on tasks of selective attention and inhibitory control. Although similar behavioural deficits have been noted in their relatives, it is yet unclear whether they reflect dysfunction in the same neural circuits. We used functional magnetic resonance imaging and the Stroop Colour Word Task to compare task related neural activity between 39 euthymic BD patients, 39 of their first-degree relatives (25 with no Axis I disorders and 14 with Major Depressive Disorder) and 48 healthy controls. Compared to controls, all individuals with familial predisposition to BD, irrespective of diagnosis, showed similar reductions in neural responsiveness in regions involved in selective attention within the posterior and inferior parietal lobules. In contrast, hypoactivation within fronto-striatal regions, implicated in inhibitory control, was observed only in BD patients and MDD relatives. Although striatal deficits were comparable between BD patients and their MDD relatives, right ventrolateral prefrontal dysfunction was uniquely associated with BD. Our findings suggest that while reduced parietal engagement relates to genetic risk, fronto-striatal dysfunction reflects processes underpinning disease expression for mood disorders. © 2011 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The sex of an individual is known to modulate the clinical presentation of bipolar disorder (BD), but little is known as to whether there are significant sex-by-diagnosis interactions on the brain structural and functional correlates of BD. Methods: We conducted a literature review of magnetic resonance imaging (MRI) studies in BD, published between January 1990 and December 2010, reporting on the effects of sex and diagnosis. In the absence of any functional MRI (fMRI) studies, this review was supplemented by original data analyses focusing on sex-by-diagnosis interactions on patterns of brain activation obtained during tasks of working memory, incentive decision-making, and facial affect processing. Results: We found no support for a sex-by-diagnosis interaction in global gray or white matter volume. Evidence regarding regional volumetric measures is limited, but points to complex interactions between sex and diagnosis with developmental and temperamental factors within limbic and prefrontal regions. Sex-by-diagnosis interactions were noted in the pattern of activation within the basal ganglia during incentive decision-making and within ventral prefrontal regions during facial affect processing. Conclusions: Potential sex-by-diagnosis interactions influencing the brain structural and functional correlates of disease expression in BD have received limited attention. Our data suggest that the sex of an individual modulates structure and function within subcortical and cortical regions implicated in disease expression. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems. © 2012 Informa Healthcare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. Method - We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Results - Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Conclusions - Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity. © 2010 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Bipolar disorder is associated with dysfunction in prefrontal and limbic areas implicated in emotional processing. Aims: To explore whether lamotrigine monotherapy may exert its action by improving the function of the neural network involved in emotional processing. Method: We used functional magnetic resonance imaging to examine changes in brain activation during a sad facial affect recognition task in 12 stable patients with bipolar disorder when medication-free compared with healthy controls and after 12 weeks of lamotrigine monotherapy. Results: At baseline, compared with controls, patients with bipolar disorder showed overactivity in temporal regions and underactivity in the dorsal medial and right ventrolateral prefrontal cortex, and the dorsal cingulate gyrus. Following lamotrigine monotherapy, patients demonstrated reduced temporal and increased prefrontal activation. Conclusions: This preliminary evidence suggests that lamotrigine may enhance the function of the neural circuitry involved in affect recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology. © 2009 Elsevier B.V. and ECNP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans are especially good at taking another's perspective-representing what others might be thinking or experiencing. This "mentalizing" capacity is apparent in everyday human interactions and conversations. We investigated its neural basis using magnetoencephalography. We focused on whether mentalizing was engaged spontaneously and routinely to understand an utterance's meaning or largely on-demand, to restore "common ground" when expectations were violated. Participants conversed with 1 of 2 confederate speakers and established tacit agreements about objects' names. In a subsequent "test" phase, some of these agreements were violated by either the same or a different speaker. Our analysis of the neural processing of test phase utterances revealed recruitment of neural circuits associated with language (temporal cortex), episodic memory (e.g., medial temporal lobe), and mentalizing (temporo-parietal junction and ventromedial prefrontal cortex). Theta oscillations (3-7 Hz) were modulated most prominently, and we observed phase coupling between functionally distinct neural circuits. The episodic memory and language circuits were recruited in anticipation of upcoming referring expressions, suggesting that context-sensitive predictions were spontaneously generated. In contrast, the mentalizing areas were recruited on-demand, as a means for detecting and resolving perceived pragmatic anomalies, with little evidence they were activated to make partner-specific predictions about upcoming linguistic utterances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the nature of resource limitations during visual target processing by imposing high temporal processing demands on the cognitive system. This was achieved by embedding target stimuli into rapid-serial-visual-presentation-streams (RSVP). In RSVP streams, it is difficult to report the second of two targets (T2) if the second follows the first (T1) within 500 ms. This effect is known as the attentional blink (AB). For the AB to occur, it is essential that T1 is followed by a mask, as without such a stimulus, the AB is significantly attenuated. Usually, it is thought that T1 processing is delayed by the mask, which in turn delays T2 processing, increasing the likelihood for T2 failures (AB). Predictions regarding amplitudes and latencies of cortical responses (M300, the magnetic counterpart to the P300) to targets were tested by investigating the neurophysiological effects of the post-T1 item (mask) by means of magnetoencephalography (MEG). Cortical M300 responses to targets drawn from prefrontal sources – areas associated with working memory – revealed accelerated T1 yet delayed T2 processing with an intervening mask. The explanation we are proposing assumes that “protection” of ongoing T1 processing necessitated by the occurrence of the mask suppresses other activation patterns, which boosts T1 yet also hinders further processing. Our data shed light on the mechanisms employed by the human brain for ensuring visual target processing under high temporal processing demands, which is hypothesized to occur at the expense of subsequently presented information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If humans monitor streams of rapidly presented (approximately 100-ms intervals) visual stimuli, which are typically specific single letters of the alphabet, for two targets (T1 and T2), they often miss T2 if it follows T1 within an interval of 200-500 ms. If T2 follows T1 directly (within 100 ms; described as occurring at 'Lag 1'), however, performance is often excellent: the so-called 'Lag-1 sparing' phenomenon. Lag-1 sparing might result from the integration of the two targets into the same 'event representation', which fits with the observation that sparing is often accompanied by a loss of T1-T2 order information. Alternatively, this might point to competition between the two targets (implying a trade-off between performance on T1 and T2) and Lag-1 sparing might solely emerge from conditional data analysis (i.e. T2 performance given T1 correct). We investigated the neural correlates of Lag-1 sparing by carrying out magnetoencephalography (MEG) recordings during an attentional blink (AB) task, by presenting two targets with a temporal lag of either 1 or 2 and, in the case of Lag 2, with a nontarget or a blank intervening between T1 and T2. In contrast to Lag 2, where two distinct neural responses were observed, at Lag 1 the two targets produced one common neural response in the left temporo-parieto-frontal (TPF) area but not in the right TPF or prefrontal areas. We discuss the implications of this result with respect to competition and integration hypotheses, and with respect to the different functional roles of the cortical areas considered. We suggest that more than one target can be identified in parallel in left TPF, at least in the absence of intervening nontarget information (i.e. masks), yet identified targets are processed and consolidated as two separate events by other cortical areas (right TPF and PFC, respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been many functional imaging studies of the brain basis of theory of mind (ToM) skills, but the findings are heterogeneous and implicate anatomical regions as far apart as orbitofrontal cortex and the inferior parietal lobe. The functional imaging studies are reviewed to determine whether the diverse findings are due to methodological factors. The studies are considered according to the paradigm employed (e.g., stories vs. cartoons and explicit vs. implicit ToM instructions), the mental state(s) investigated, and the language demands of the tasks. Methodological variability does not seem to account for the variation in findings, although this conclusion may partly reflect the relatively small number of studies. Alternatively, several distinct brain regions may be activated during ToM reasoning, forming an integrated functional "network." The imaging findings suggest that there are several "core" regions in the network-including parts of the prefrontal cortex and superior temporal sulcus-while several more "peripheral" regions may contribute to ToM reasoning in a manner contingent on relatively minor aspects of the ToM task. © 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Impairment in social cognition may contribute to deficits in social functioning in patients with bipolar disorder (BD). In this study, a complex social cognition task was administered during a neuroimaging session. The behavioral and neural correlates of social cogniton in patients with BD were compared to healthy comparison (HC) subjects. Methods: The task was administered to 25 HC and 25 patients with depression scores ranging from euthymic to depressed at the time of assessment. The task required participants to evaluate situations that were “enhancing” or “threatening” to self-esteem, directed at both oneself, and at other people. For instance, self-esteem enhancing scenarios involved vignettes of activities such as receiving praise during a sports game, while a threatening scenario involved, for example, receiving criticism at a party. Participants were then required to evaluate characters in the scenarios on the basis of positive (“kind”) or negative (“mean”) descriptors. Evaluations were classified from extremely negative to extremely positive. The frequencies of behavioral responses were analyzed using chi-square tests and fMRI data were analyzed using Statistical Parametric Mapping software. Results: Patients differed significantly from HCs in their evaluation of threatening scenarios, directed at both oneself and at other people (p<0.001). Patients had a lower proportion of responses in the neutral category, and more responses in the positive and negative categories, relative to HCs. Neuroimaging results reveal differential patterns of prefrontal-cortical and limbic-subcortical activation in BDs throughout the task [p<0.05 (unc.)]. Conclusions: Findings will contribute to understanding difficulty in interpersonal functioning in patients with BD.