747 resultados para potato


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colonization mutant of the efficient root-colonizing biocontrol strain Pseudomonas fluorescens WCS365 is described that is impaired in competitive root-tip colonization of gnotobiotically grown potato, radish, wheat, and tomato, indicating a broad host range mutation. The colonization of the mutant is also impaired when studied in potting soil, suggesting that the defective gene also plays a role under more natural conditions. A DNA fragment that is able to complement the mutation for colonization revealed a multicistronic transcription unit composed of at least six ORFs with similarity to lppL, lysA, dapF, orf235/233, xerC/sss, and the largely incomplete orf238. The transposon insertion in PCL1233 appeared to be present in the orf235/233 homologue, designated orf240. Introduction of a mutation in the xerC/sss homologue revealed that the xerC/sss gene homologue rather than orf240 is crucial for colonization. xerC in Escherichia coli and sss in Pseudomonas aeruginosa encode proteins that belong to the λ integrase family of site-specific recombinases, which play a role in phase variation caused by DNA rearrangements. The function of the xerC/sss homologue in colonization is discussed in terms of genetic rearrangements involved in the generation of different phenotypes, thereby allowing a bacterial population to occupy various habitats. Mutant PCL1233 is assumed to be locked in a phenotype that is not well suited to compete for colonization in the rhizosphere. Thus we show the importance of phase variation in microbe–plant interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z,13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by β-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles “oxylipin signatures.” Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the α-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene silencing is an important but little understood regulatory mechanism in plants. Here we report that a viral sequence, initially identified as a mediator of synergistic viral disease, acts to suppress the establishment of both transgene-induced and virus-induced posttranscriptional gene silencing. The viral suppressor of silencing comprises the 5′-proximal region of the tobacco etch potyviral genomic RNA encoding P1, helper component-proteinase (HC-Pro) and a small part of P3, and is termed the P1/HC-Pro sequence. A reversal of silencing assay was used to assess the effect of the P1/HC-Pro sequence on transgenic tobacco plants (line T4) that are posttranscriptionally silenced for the uidA reporter gene. Silencing was lifted in offspring of T4 crosses with four independent transgenic lines expressing P1/HC-Pro, but not in offspring of control crosses. Viral vectors were used to assess the effect of P1/HC-Pro expression on virus-induced gene silencing (VIGS). The ability of a potato virus X vector expressing green fluorescent protein to induce silencing of a green fluorescent protein transgene was eliminated or greatly reduced when P1/HC-Pro was expressed from the same vector or from coinfecting potato virus X vectors. Expression of the HC-Pro coding sequence alone was sufficient to suppress virus-induced gene silencing, and the HC-Pro protein product was required for the suppression. This discovery points to the role of gene silencing as a natural antiviral defense system in plants and offers different approaches to elucidate the molecular basis of gene silencing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In transgenic and nontransgenic plants, viruses are both initiators and targets of a defense mechanism that is similar to posttranscriptional gene silencing (PTGS). Recently, it was found that potyviruses and cucumoviruses encode pathogenicity determinants that suppress this defense mechanism. Here, we test diverse virus types for the ability to suppress PTGS. Nicotiana benthamiana exhibiting PTGS of a green fluorescent protein transgene were infected with a range of unrelated viruses and various potato virus X vectors producing viral pathogenicity factors. Upon infection, suppression of PTGS was assessed in planta through reactivation of green fluorescence and confirmed by molecular analysis. These experiments led to the identification of three suppressors of PTGS and showed that suppression of PTGS is widely used as a counter-defense strategy by DNA and RNA viruses. However, the spatial pattern and degree of suppression varied extensively between viruses. At one extreme, there are viruses that suppress in all tissues of all infected leaves, whereas others are able to suppress only in the veins of new emerging leaves. This variation existed even between closely related members of the potexvirus group. Collectively, these results suggest that virus-encoded suppressors of gene silencing have distinct modes of action, are targeted against distinct components of the host gene-silencing machinery, and that there is dynamic evolution of the host and viral components associated with the gene-silencing mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of oxaloacetate (OA) transport into mitochondria from potato (Solanum tuberosum) tuber and pea (Pisum sativum) leaves were studied by measuring the uptake of 14C-labeled OA into liposomes with incorporated mitochondrial membrane proteins preloaded with various dicarboxylates or citrate. OA was found to be transported in an obligatory counterexchange with malate, 2-oxoglutarate, succinate, citrate, or aspartate. Phtalonate inhibited all of these countertransports. OA-malate countertransport was inhibited by 4,4′-dithiocyanostilbene-2,2′-disulfonate and pyridoxal phosphate, and also by p-chloromercuribenzene sulfonate and mersalyl, indicating that a lysine and a cysteine residue of the translocator protein are involved in the transport. From these and other inhibition studies, we concluded that plant mitochondria contain an OA translocator that differs from all other known mitochondrial translocators. Major functions of this translocator are the export of reducing equivalents from the mitochondria via the malate-OA shuttle and the export of citrate via the citrate-OA shuttle. In the cytosol, citrate can then be converted either into 2-oxoglutarate for use as a carbon skeleton for nitrate assimilation or into acetyl-coenzyme A for use as a precursor for fatty acid elongation or isoprenoid biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monomer composition of the esterified part of suberin can be determined using gas chromatography-mass spectroscopy technology and is accordingly believed to be well known. However, evidence was presented recently indicating that the suberin of green cotton (Gossypium hirsutum cv Green Lint) fibers contains substantial amounts of esterified glycerol. This observation is confirmed in the present report by a sodium dodecyl sulfate extraction of membrane lipids and by a developmental study, demonstrating the correlated accumulation of glycerol and established suberin monomers. Corresponding amounts of glycerol also occur in the suberin of the periderm of cotton stems and potato (Solanum tuberosum) tubers. A periderm preparation of wound-healing potato tuber storage parenchyma was further purified by different treatments. As the purification proceeded, the concentration of glycerol increased at about the same rate as that of α,ω-alkanedioic acids, the most diagnostic suberin monomers. Therefore, it is proposed that glycerol is a monomer of suberins in general and can cross-link aliphatic and aromatic suberin domains, corresponding to the electron-translucent and electron-opaque suberin lamellae, respectively. This proposal is consistent with the reported dimensions of the electron-translucent suberin lamellae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuber formation in potato (Solanum tuberosum) is promoted by short photoperiods and is inhibited by gibberellins (GAs). Endogenous levels of GA1 were shown to decrease in stolons and leaves of potato plants induced to tuberize, which suggests that photoperiodic regulation of GA biosynthesis may play a role in tuber induction. We report the isolation of three potato cDNA clones (StGA20ox1–3) encoding GA 20-oxidase, a key regulatory enzyme in the GA-biosynthetic pathway. Using northern analysis, we detected a differential pattern of tissue-specific expression of the mRNAs corresponding to these clones. StGA20ox mRNAs were also very abundant in leaves of the potato ga1 mutant, which is blocked in the 13-hydroxylation step, and were strongly down-regulated by gibberellic acid, suggesting a feedback regulation of these genes. In plants grown in short-day (inductive) conditions, levels of the StGA20ox transcripts in leaves fluctuated during a 24-h period, with a peak of accumulation observed about 4 h after the lights were turned off. Interruption of the night with a 30-min “night break” of light (noninductive conditions) did not have a marked effect on the levels of accumulation of the three GA 20-oxidase mRNAs during the day, but it induced a second peak of expression of StGA20ox1 and StGA20ox3 transcripts late in the night. This observation, together with the finding that StGA20ox1 mRNA is expressed at high levels in leaves, suggests that night-break induction of this gene might play a role in the control of tuberization by regulating endogenous levels of GAs in response to daylength conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I β-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In tomato, Ve is implicated in race-specific resistance to infection by Verticillium species causing crop disease. Characterization of the Ve locus involved positional cloning and isolation of two closely linked inverted genes. Expression of individual Ve genes in susceptible potato plants conferred resistance to an aggressive race 1 isolate of Verticillium albo-atrum. The deduced primary structure of Ve1 and Ve2 included a hydrophobic N-terminal signal peptide, leucine-rich repeats containing 28 or 35 potential glycosylation sites, a hydrophobic membrane-spanning domain, and a C-terminal domain with the mammalian E/DXXXLφ or YXXφ endocytosis signals (φ is an amino acid with a hydrophobic side chain). A leucine zipper-like sequence occurs in the hydrophobic N-terminal signal peptide of Ve1 and a Pro-Glu-Ser-Thr (PEST)-like sequence resides in the C-terminal domain of Ve2. These structures suggest that the Ve genes encode a class of cell-surface glycoproteins with receptor-mediated endocytosis-like signals and leucine zipper or PEST sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants contain RNA-dependent RNA polymerase (RdRP) activities that synthesize short cRNAs by using cellular or viral RNAs as templates. During studies of salicylic acid (SA)-induced resistance to viral pathogens, we recently found that the activity of a tobacco RdRP was increased in virus-infected or SA-treated plants. Biologically active SA analogs capable of activating plant defense response also induced the RdRP activity, whereas biologically inactive analogs did not. A tobacco RdRP gene, NtRDRP1, was isolated and found to be induced both by virus infection and by treatment with SA or its biologically active analogs. Tobacco lines deficient in the inducible RDRP activity were obtained by expressing antisense RNA for the NtRDRP1 gene in transgenic plants. When infected by tobacco mosaic virus, these transgenic plants accumulated significantly higher levels of viral RNA and developed more severe disease symptoms than wild-type plants. After infection by a strain of potato virus X that does not spread in wild-type tobacco plants, the transgenic NtRDRP1 antisense plants accumulated virus and developed symptoms not only locally in inoculated leaves but also systemically in upper uninoculated leaves. These results strongly suggest that inducible RdRP activity plays an important role in plant antiviral defense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9 peptides to determine the relationship between elicitor activity of these peptides and their affinity to the binding site in the membranes of tomato. Mutant AVR9 peptides were purified from tobacco (Nicotiana clevelandii) inoculated with recombinant potato virus X expressing the corresponding avirulence gene Avr9. In addition, several AVR9 peptides were synthesized chemically. Physicochemical techniques revealed that the peptides were correctly folded. Most mutant AVR9 peptides purified from potato virus X::Avr9-infected tobacco contain a single N-acetylglucosamine. These glycosylated AVR9 peptides showed a lower affinity to the binding site than the nonglycosylated AVR9 peptides, whereas their necrosis-inducing activity was hardly changed. For both the nonglycosylated and the glycosylated mutant AVR9 peptides, a positive correlation between their affinity to the membrane-localized binding site and their necrosis-inducing activity in MoneyMaker-Cf9 tomato was found. The perception of AVR9 in resistant and susceptible plants is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grafting experiments between phytochrome B antisense and wild-type potato (Solanum tuberosum L. subsp. andigena [line 7540]) plants provide evidence that phytochrome B is involved in the production of a graft-transmissible inhibitor of tuberization, the level of which is reduced in the antisense plants, allowing them to tuberize in noninducing photoperiods.