988 resultados para positive definite matrix
Resumo:
In order to improve the tracking and erosion performance of outdoor polymeric silicone rubber (SR) insulators used in HV power transmission lines, micron sized inorganic fillers are usually added to the base SR matrix. In addition, insulators used in high voltage dc transmission lines are designed to have increased creepage distance to mitigate the tracking and erosion problems. ASTM D2303 standard gives a procedure for finding the tracking and erosion resistance of outdoor polymeric insulator weathershed material samples under laboratory conditions for ac voltages. In this paper, inclined plane (IP) tracking and erosion tests similar to ASTM D2303 were conducted under both positive and negative dc voltages for silicone rubber samples filled with micron and nano sized particles to understand the phenomena occurring during such tests. Micron sized Alumina Trihydrate (ATH) and nano sized alumina fillers were added to silicone rubber matrix to improve the resistance to tracking and erosion. The leakage current during the tests and the eroded mass at the end of the tests were monitored. Scanning Electron Microscopy (SEM) and Energy dispersive Xray (EDX) studies were conducted to understand the filler dispersion and the changes in surface morphology in both nanocomposite and microcomposite samples. The results suggest that nanocomposites performed better than microcomposites even for a small filler loading (4%) for both positive and negative dc stresses. It was also seen that the tracking and erosion performance of silicone rubber is better under negative dc as compared to positive dc voltage. EDX studies showed migration of different ions onto the surface of the sample during the IP test under positive dc which has led to an inferior performance as compared to the performance under negative dc.
Resumo:
Zinc-aluminium cast alloys (ZA alloys) exhibit good castability and mechanical properties but these alloys lack creep resistance and high temperature stability. One solution to improve these properties is to reinforce with ceramic particles or fibres, to result in MMCs. MMCs can be produced using casting technique involving infiltration. A systematic investigation was taken and this paper discusses the salient findings of the study on the ZA-27 alloy based MMCs produced through squeeze casting. (Reinforcing fibers: SAFFIL (chopped alumina) or mullite.)
Resumo:
The commercial automotive mufflers are generally of a complicated shape with multiply connected parts and complex acoustic elements. The analysis of such complex mufflers has always been a great challenge. In this paper, an Integrated Transfer Matrix method has been developed to analyze complex mufflers. Integrated transfer matrix relates the state variables across the entire cross-section of the muffler shell, as one moves along the axis of the muffler, and can be partitioned appropriately in order to relate the state variables of different tubes constituting the cross-section. The paper presents a generalized one-dimensional (1-D) approach, using the transfer matrices of simple acoustic elements, which are available from the literature. The present approach is robust and flexible owing to its capability to construct an overall matrix of the muffler with the transfer matrices of individual acoustic elements and boundary conditions, which can then be used to evaluate the transmission loss, insertion loss, etc. Results from the present approach have been validated through comparisons with the available experimental and three-dimensional finite element method (FEM) based results. The results show good agreement with both measurements and FEM analysis up to the cut-off frequency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The acoustical behavior of an elliptical chamber muffler having an end-inlet and side-outlet port is analyzed semi-analytically. A uniform piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of acoustic pressure field in the elliptical cavity in terms of angular and radial Mathieu functions, subjected to rigid wall condition, whereupon under the assumption of a point source, Green's function is obtained. On integrating this function over piston area of the side or end port and dividing it by piston area, one obtains the acoustic field, whence one can find the impedance matrix parameters characterizing the 2-port system. The acoustic performance of these configurations is evaluated in terms of transmission loss (TL). The analytical results thus obtained are compared with 3-D HA carried on a commercial software for certain muffler configurations. These show excellent agreement, thereby validating the 3-D semi-analytical piston driven model. The influence of the chamber length as well as the angular and axial location of the end and side ports on TL performance is also discussed, thus providing useful guidelines to the muffler designer. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chitosan (CS)-polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid (SSA) and modified with sulfonated polyethersulfone (SPES) mixed-matrix membranes are reported for their application in direct methanol fuel cells (DMFCs). Polyethersulfone (PES) is sulfonated by chlorosulfonic acid and factors affecting the sulfonation reaction, such as time and temperature, are studied. The ion-exchange capacity, degree of sulfonation, sorption, and proton conductivity for the mixed-matrix membranes are investigated. The mixed-matrix membranes are also characterised for their mechanical and thermal properties. The methanol-crossover flux across the mixed-matrix membranes is studied by measuring the mass balance of methanol using the density meter. The methanol cross-over for these membranes is found to be about 33% lower in relation to Nafion-117 membrane. The DMFC employing CS-PVA-SPES mixed-matrix membrane with an optimum content of 25 wt % SPES delivers a peak power-density of 5.5 mW cm-2 at a load current-density of 25 mA cm-2 while operating at 70 degrees C. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
Resumo:
Chemically synthesized ``pro-sensitizers'' release the sensitizer in the presence of lipase or beta-glucosidase, triggering a significant luminescence response from a lanthanide based hydrogel.
Resumo:
Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.
Resumo:
Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for LVCSR systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication.In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on a 1138 word vocabulary RM1 task using Sphinx 3.7 system show that, for a typical case the matrix multiplication approach leads to overall speedup of 46%. Both the low-rank approximation methods increase the speedup to around 60%, with the former method increasing the word error rate (WER) from 3.2% to 6.6%, while the latter increases the WER from 3.2% to 3.5%.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.