954 resultados para positional fault


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identifies lineaments that indicate fault activity and strengthens previous interpretations of structures within the eastern extent of the Seattle Fault zone in Bellevue, WA. My investigation has compiled geotechnical subsurface data, high-resolution LiDAR imagery, and ground-penetrating radar to produce strip log sections transecting identified lineaments and depth-to-bedrock maps exposing fault structure. My work incorporates field investigation, multiple publicly available datasets, and subsurface modeling. My results include a map showing twenty-eight identified surface lineaments, five strip-log sections, and interpolated depth-to-bedrock and minimum-depth-to-bedrock maps. Several lineaments identified in the minimum-depth-to-bedrock raster are parallel to the Seattle Fault zone and suggest the presence of small splay faults beneath east Bellevue. These results strengthen previous interpretations of seismic profile data located in the study area. Another lineament identified in the minimum-depth-to-bedrock raster suggest an unmapped tear fault accommodating differential offset along fault strike between Mercer Island and Bellevue. This work also demonstrates the utility of publicly available datasets such as geotechnical subsurface explorations and LiDAR imagery in supplementing geologic investigations in the eastern extent of the Seattle Fault zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Seattle Fault is an active east-west trending reverse fault zone that intersects both Seattle and Bellevue, two highly populated cities in Washington. Rupture along strands of the fault poses a serious threat to infrastructure and thousands of people in the region. Precise locations of fault strands are still poorly constrained in Bellevue due to blind thrusting, urban development, and/or erosion. Seismic reflection and aeromagnetic surveys have shed light on structural geometries of the fault zone in bedrock. However, the fault displaces both bedrock and unconsolidated Quaternary deposits, and seismic data are poor indicators of the locations of fault strands within the unconsolidated strata. Fortunately, evidence of past fault strand ruptures may also be recorded indirectly by fluvial processes and should also be observable in the subsurface. I analyzed hillslope and river geomorphology using LiDAR data and ArcGIS to locate surface fault traces and then compare/correlate these findings to subsurface offsets identified using borehole data. Geotechnical borings were used to locate one fault offset and provide input to a cross section of the fault constructed using Rockworks software. Knickpoints, which may correlate to fault rupture, were found upstream of this newly identified fault offset as well as upstream of a previously known fault segment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contributing to the evaluation of seismic hazards, a previously unmapped strand of the Seattle Fault Zone (SFZ), cutting across the southwest side of Lake Washington and southeast Seattle, is located and characterized on the basis of bathymetry, borehole logs, and ground penetrating radar (GPR). Previous geologic mapping and geophysical analysis of the Seattle area have generally mapped the locations of some strands of the SFZ, though a complete and accurate understanding of locations of all individual strands of the fault system is still incomplete. A bathymetric scarp-like feature and co-linear aeromagnetic anomaly lineament defined the extent of the study area. A 2-dimensional lithology cross-section was constructed using six boreholes, chosen from suitable boreholes in the study area. In addition, two GPR transects, oblique to the proposed fault trend, served to identify physical differences in subsurface materials. The proposed fault trace follows the previously mapped contact between the Oligocene Blakeley Formation and Quaternary deposits, and topographic changes in slope. GPR profiles in Seward Park and across the proposed fault location show the contact between the Blakeley Formation and unconsolidated glacial deposits, but it does not constrain an offset. However, north-dipping beds in the Blakely Formation are consistent with previous interpretations of P-wave seismic profiles on Mercer Island and Bellevue, Washington. The profiles show the mapped location of the aeromagnetic lineament in Lake Washington and the inferred location of the steeply-dipping, high-amplitude bedrock reflector, representing a fault strand. This north-dipping reflector is likely the same feature identified in my analysis. I characterize the strand as a splay fault, antithetic to the frontal fault of the SFZ. This new fault may pose a geologic hazard to the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying landscape evolution of the Earthís surface is difficult because both tectonic forces and surface processes control its response to perturbation, and ultimately, its shape and form. Researchers often use numerical models to study erosional response to deformation because there are rarely natural settings in which we can evaluate both tectonic activity and topographic response over appropriate time scales (103-105 years). In certain locations, however, geologic conditions afford the unique opportunity to study the relationship between tectonics and topography. One such location is along the Dragonís Back Pressure Ridge in California, where the landscape moves over a structural discontinuity along the San Andreas Fault and landscape response to both the initiation and cessation of uplift can be observed. In their landmark study, Hilley and Arrowsmith (2008) found that geomorphic metrics such as channel steepness tracked uplift and that hillslope response lagged behind that of rivers. Ideal conditions such as uniform vegetation density and similar lithology allowed them to view each basin as a developmental stage of response to uplift only. Although this work represents a significant step forward in understanding landscape response to deformation, it remains unclear how these results translate to more geologically complex settings. In this study, I apply similar methodology to a left bend along the San Andreas Fault in the Santa Cruz Mountains, California. At this location, the landscape is translated through a zone of localized uplift caused by the bend, but vegetation, lithology, and structure vary. I examine the geomorphic response to uplift along the San Andreas Fault bend in order to determine whether predicted landscape patterns can be observed in a larger, more geologically complex setting than the Dragonís Back Pressure Ridge. I find that even with a larger-scale and a more complex setting, geomorphic metrics such as channel steepness index remain useful tools for evaluating landscape evolution through time. Steepness indices in selected streams of study record localized uplift caused by the restraining bend, while hillslope adjustment in the form of landsliding occurs over longer time scales. This project illustrates that it is possible to apply concepts of landscape evolution models to complex settings and is an important contribution to the body of geomorphological study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment-or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991), a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM) of Mora and Place (1994). We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective instability of pore-fluid flow in inclined and fluid-saturated three-dimensional fault zones has been theoretically investigated in this paper. Due to the consideration of the inclined three-dimensional fault zone with any values of the inclined angle, it is impossible to use the conventional linear stability analysis method for deriving the critical condition (i.e., the critical Rayleigh number) which can be used to investigate the convective instability of the pore-fluid flow in an inclined three-dimensional fault zone system. To overcome this mathematical difficulty, a combination of the variable separation method and the integration elimination method has been used to derive the characteristic equation, which depends on the Rayleigh number and the inclined angle of the inclined three-dimensional fault zone. Using this characteristic equation, the critical Rayleigh number of the system can be numerically found as a function of the inclined angle of the three-dimensional fault zone. For a vertically oriented three-dimensional fault zone system, the critical Rayleigh number of the system can be explicitly derived from the characteristic equation. Comparison of the resulting critical Rayleigh number of the system with that previously derived in a vertically oriented three-dimensional fault zone has demonstrated that the characteristic equation of the Rayleigh number is correct and useful for investigating the convective instability of pore-fluid flow in the inclined three-dimensional fault zone system. The related numerical results from this investigation have indicated that: (1) the convective pore-fluid flow may take place in the inclined three-dimensional fault zone; (2) if the height of the fault zone is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone stabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; (3) if the thickness of the stratum is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone destabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; and that (4) the shape of the inclined three-dimensional fault zone may affect the convective instability of pore-fluid flow in the system. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the effectiveness of a programme of static positional stretches and positioning of the stroke-affected shoulder for maintaining shoulder external rotation and decreasing hemiplegic shoulder pain. Design: Randomized controlled trial with pretest and posttest design. Setting: Inpatient rehabilitation unit. Subjects: Thirty-two participants ( 17 treatment, 15 comparison) with a first time stroke who were admitted for rehabilitation. Interventions: Treatment participants completed a programme of static positional stretches of the stroke-affected shoulder twice daily and positioned the stroke-affected upper limb in an armrest support at all other times when seated. Main measures: The main outcome measures were pain-free range of motion into external rotation, pain in the stroke-affected shoulder at rest and with movement, motor recovery and functional independence. Results: All participants demonstrated a significant loss of external rotation ( P = 0.005) with no significant group differences. All participants demonstrated a significant improvement in motor recovery ( P < 0.01) and functional independence ( P < 0.01) with no significant group differences. There were no significant effects for pain. The comparison group recorded a decrease in mean pain reported with movement from admission to discharge, and the treatment group recorded an increase. Conclusions: Participation in the management programme did not result in improved outcomes. The results of this study do not support the application of the programme of static positional stretches to maintain range of motion in the shoulder. The effect of increasing pain for the treatment group requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.