976 resultados para pollution monitoring sensors
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica, Especialidade em Engenharia Bioquímica
Resumo:
Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.
Resumo:
Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.
Resumo:
During drilling operation, cuttings are produced downhole and must be removed to avoid issues which can lead to Non Productive Time (NPT). Most of stuck pipe and then Bottom-Hole Assembly (BHA) lost events are hole cleaned related. There are many parameters which help determine hole cleaning conditions, but a proper selection of the key parameters will facilitate monitoring hole cleaning conditions and interventions. The aim of Hole Cleaning Monitoring is to keep track of borehole conditions including hole cleaning efficiency and wellbore stability issues during drilling operations. Adequate hole cleaning is the one of the main concerns in the underbalanced drilling operations especially for directional and horizontal wells. This dissertation addresses some hole cleaning fundamentals which will act as the basis for recommendation practice during drilling operations. Understand how parameters such as Flowrate, Rotation per Minute (RPM), Rate of Penetration (ROP) and Mud Weight are useful to improve the hole cleaning performance and how Equivalent Circulate Density (ECD), Torque & Drag (T&D) and Cuttings Volumes coming from downhole help to indicate how clean and stable the well is. For case study, hole cleaning performance or cuttings volume removal monitoring, will be based on real-time measurements of the cuttings volume removal from downhole at certain time, taking into account Flowrate, RPM, ROP and Drilling fluid or Mud properties, and then will be plotted and compared to the volume being drilled expected. ECD monitoring will dictate hole stability conditions and T&D and Cuttings Volume coming from downhole monitoring will dictate how clean the well is. T&D Modeling Software provide theoretical calculated T&D trends which will be plotted and compared to the real-time measurements. It will use the measured hookloads to perform a back-calculation of friction factors along the wellbore.
Resumo:
Despite the recent progresses in robotics, autonomous robots still have too many limitations to reliably help people with disabilities. On the other hand, animals, and especially dogs, have already demonstrated great skills in assisting people in many daily situations. However, dogs also have their own set of limitations. For example, they need to rest periodically, to be healthy (physically and psychologically), and it is difficult to control them remotely. This project aims to “augment” the Assistance dog, by developing a system that compensates some of the dog weaknesses through a robotic device mounted on the dog harness. This specific study, involved in the COCHISE project, focuses on the development of a system for the monitoring of dogs activity and physiological parameters.
Resumo:
Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributing to the health problems, such as cardiovascular and respiratory diseases, cancer, and physical injuries. This thesis presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Hai Phong City, Vietnam. The focus is on the integration of modelling and GIS approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-references data. A simplified health risk assessment was also done for Ha Noi based on monitoring data that allows a comparison of the results between the two cases. The results of the case studies show that health risk assessment based on modelling data can provide a much more detail results and allows assessing health impacts of different mobility development options at micro level. The use of modeling and GIS as a common platform for the integration of different assessments (environmental, health, socio-economic, etc.) provides various strengths, especially in capitalising on the available data stored in different units and forms and allows handling large amount of data. The use of models and GIS in a health risk assessment, from a decision making point of view, can reduce the processing/waiting time while providing a view at different scales: from micro scale (sections of a city) to a macro scale. It also helps visualising the links between air quality and health outcomes which is useful discussing different development options. However, a number of improvements can be made to further advance the integration. An improved integration programme of the data will facilitate the application of integrated models in policy-making. Data on mobility survey, environmental monitoring and measuring must be standardised and legalised. Various traffic models, together with emission and dispersion models, should be tested and more attention should be given to their uncertainty and sensitivity
Resumo:
Crisis-affected communities and global organizations for international aid are becoming increasingly digital as consequence geotechnology popularity. Humanitarian sector changed in profound ways by adopting new technical approach to obtain information from area with difficult geographical or political access. Since 2011, turkey is hosting a growing number of Syrian refugees along southeastern region. Turkish policy of hosting them in camps and the difficulty created by governors to international aid group expeditions to get information, made such international organizations to investigate and adopt other approach in order to obtain information needed. They intensified its remote sensing approach. However, the majority of studies used very high-resolution satellite imagery (VHRSI). The study area is extensive and the temporal resolution of VHRSI is low, besides it is infeasible only using these sensors as unique approach for the whole area. The focus of this research, aims to investigate the potentialities of mid-resolution imagery (here only Landsat) to obtain information from region in crisis (here, southeastern Turkey) through a new web-based platform called Google Earth Engine (GEE). Hereby it is also intended to verify GEE currently reliability once the Application Programming Interface (API) is still in beta version. The finds here shows that the basic functions are trustworthy. Results pointed out that Landsat can recognize change in the spectral resolution clearly only for the first settlement. The ongoing modifications vary for each case. Overall, Landsat demonstrated high limitations, but need more investigations and may be used, with restriction, as a support of VHRSI.
Resumo:
The “CMS Safety Closing Sensors System” (SCSS, or CSS for brevity) is a remote monitoring system design to control safety clearance and tight mechanical movements of parts of the CMS detector, especially during CMS assembly phases. We present the different systems that makes SCSS: its sensor technologies, the readout system, the data acquisition and control software. We also report on calibration and installation details, which determine the resolution and limits of the system. We present as well our experience from the operation of the system and the analysis of the data collected since 2008. Special emphasis is given to study positioning reproducibility during detector assembly and understanding how the magnetic fields influence the detector structure.
Resumo:
Generating personalized movie recommendations to users is a problem that most commonly relies on user-movie ratings. These ratings are generally used either to understand the user preferences or to recommend movies that users with similar rating patterns have rated highly. However, movie recommenders are often subject to the Cold-Start problem: new movies have not been rated by anyone, so, they will not be recommended to anyone; likewise, the preferences of new users who have not rated any movie cannot be learned. In parallel, Social-Media platforms, such as Twitter, collect great amounts of user feedback on movies, as these are very popular nowadays. This thesis proposes to explore feedback shared on Twitter to predict the popularity of new movies and show how it can be used to tackle the Cold-Start problem. It also proposes, at a finer grain, to explore the reputation of directors and actors on IMDb to tackle the Cold-Start problem. To assess these aspects, a Reputation-enhanced Recommendation Algorithm is implemented and evaluated on a crawled IMDb dataset with previous user ratings of old movies,together with Twitter data crawled from January 2014 to March 2014, to recommend 60 movies affected by the Cold-Start problem. Twitter revealed to be a strong reputation predictor, and the Reputation-enhanced Recommendation Algorithm improved over several baseline methods. Additionally, the algorithm also proved to be useful when recommending movies in an extreme Cold-Start scenario, where both new movies and users are affected by the Cold-Start problem.
Resumo:
INTRODUCTION: From February-September 2010, seroepidemiological surveys were conducted on non-human primates and transmitter vector capture was used to investigate the possible circulation of arboviruses in the municipalities of Bonito, Campo Grande, and Jardim, State of Mato Grosso do Sul, Brazil. METHODS: A total of 65 primates from the wild and captivity were used, and potential vectors were captured using Castro and dip nets. Serum samples were tested at the Instituto Evandro Chagas, State of Pará, using the hemagglutination inhibition test to detect total antibodies against 19 different arboviruses. Virus isolation was attempted from serum samples and arthropod suspensions using newborn mice and the C6/36 cell line clone. In addition, identification of the vector species was conducted. RESULTS: From the 19 serum samples from Campo Grande, 1 sample had a 1:20 titer for Flavivirus. From the 35 samples collected in Bonito, 17 samples had antibodies to arboviruses, 4 (11.4%) were positive for Alphavirus, and 5 (14.2%) were positive for Flavivirus. Monotypic reactions were observed for the Mayaro (n = 10) and Oropouche (n = 5) viruses, and 6 (17.1%) samples had titers for >1 virus. We captured 120 Culicidae individuals that were potential arbovirus transmitters in Jardim; however, all the samples were negative for the viruses. CONCLUSIONS: Mato Grosso do Sul has a variety of vertebrate hosts and transmission vectors, thereby providing ideal conditions for the emergence or reemergence of arboviruses, including some pathogenic to human beings.
Resumo:
Clinical research is essential for the development of new drugs, diagnostic tests and new devices. Clinical monitoring is implemented to improve the quality of research and attain high ethical and scientific standards. This review discusses the role of clinical monitors, taking into account the variety of scenarios in which medical research is developed, and highlights the challenges faced by research teams to ensure that patients rights are respected and that the social role of scientific research is preserved. Specific emphasis is given to the ethical dilemmas related to the multiple roles which clinical monitors play in the research framework, mainly those involving the delicate equilibrium between the loyalty to the sponsor and to the research subjects. The essential role of clinical monitoring for research developed in poor healthcare scenarios is highlighted as an approach to get the local infrastructure strengthening needed to achieve an adequate level of good clinical practices.
Resumo:
Introduction The aim of the present study was to assess the polymerase chain reaction (PCR) as a method for detecting Trypanosoma cruzi infection in triatomines that had been previously determined by microscopic examination in the State of Mato Grosso do Sul, Brazil. Methods In total, 515 specimens were collected. Material from the digestive tract of each triatomine was analyzed for the presence of T. cruzi by microscopic examination and PCR using the 121/122 primer set. Results Among the 515 specimens tested, 58 (11.3%) were positive by microscopy and 101 (19.61%) were positive by PCR and there was an association between the results of the techniques (χ2 = 53.354, p = 0.001). The main species of triatomine identified was T. sordida (95.5%) Conclusions The use of PCR in entomological surveillance may contribute to a better assessment of the occurrence of T. cruzi in triatomine populations.
Resumo:
Understanding how the brain works has been one of the greatest goals of mankind. This desire fuels the scientific community to pursue novel techniques able to acquire the complex information produced by the brain at any given moment. The Electrocorticography (ECoG) is one of those techniques. By placing conductive electrodes over the dura, or directly over the cortex, and measuring the electric potential variation, one can acquire information regarding the activation of those areas. In this work, transparent ECoGs, (TrECoGs) are fabricated through thin film deposition of the Transparent Conductive Oxides (TCOs) Indium-Zinc-Oxide (IZO) and Gallium-Zinc-Oxide (GZO). Five distinct devices have been fabricated via shadow masking and photolithography. The data acquired and presented in this work validates the TrECoGs fabricated as efficient devices for recording brain activity. The best results were obtained for the GZO- based TrECoG, which presented an average impedance of 36 kΩ at 1 kHz for 500 μm diameter electrodes, a transmittance close to 90% for the visible spectrum and a clear capability to detect brain signal variations. The IZO based devices also presented high transmittance levels (90%), but with higher impedances, which ranged from 40 kΩ to 100 kΩ.