938 resultados para platelet intracellular calcium response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphate release kinetics in soils are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Dissolution of phosphate-containing minerals induced by a changing rhizosphere equilibrium through proton input is one important mechanism that releases phosphate into bioavailable forms. Our objectives were (i) to determine phosphate release kinetics during H+ addition in calcareous soils of the Schwäbische Alb, Germany, and to assess the influence of (ii) land-use type (grassland vs. forest) and (iii) management intensity on reactive phosphate pools and phosphate release rate constants during H+ addition. Phosphate release kinetics were characterized by a large fast-reacting phosphatepool, which could be attributed to poorly-crystalline calcium phosphates, and a small slow-reacting phosphate pool probably originating from carbonate-bearing hydroxylapatite. Both reactive phosphate pools—as well as total phosphate concentrations (TP) in soil—were greater in grassland than in forest soils. In organically fertilized grassland soils, concentrations of released phosphate were higher than in unfertilized soils, likely because organic fertilizers contain poorly-crystalline phosphate compounds which are further converted into sparingly soluble phosphate forms. Because of an enriched slow-reacting phosphate pool, mown pastures were characterized by a more continuous slow phosphate release reaction in contrast to clear biphasic phosphate release patterns in meadows. Consequently, managing phosphate release kinetics via management measures is a valuable tool to evaluate longer-term P availability in soil in the context of finite rock phosphate reserves on earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The von Willebrand factor (VWF)-cleaving metalloprotease, ADAMTS13 (adisintegrin and metalloprotease with thrombospondin type 1 motifs-13) is the only known target of the dysregulated immune response in acquired TTP. Autoantibodies to ADAMTS13 either neutralize its activity or accelerate its clearance, thereby causing a severe deficiency of ADAMTS13 in plasma. As a consequence, size regulation of VWF is impaired and the persistence of ultra-large VWF (ULVWF) multimers facilitates microvascular platelet aggregation causing microangiopathic haemolytic anaemia and ischaemic organ damage. Autoimmune TTP although a rare disease with an annual incidence of 1.72 cases has a mortality rate of 20% even with adequate therapy. We describe the mechanisms involved in ADAMTS13 autoimmunity with a focus on the role of B- and T-cells in the pathogenesis of this disorder. We discuss the potential translation of recent experimental findings into future therapeutic concepts for the treatment of acquired TTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct classes of neurons have been examined in the nervous system of Aplysia. The membrane properties of these neurons are regulated by intracellular signalling molecules in both a short-term and a long-term fashion.^ The role of the phosphatidylinositol cycle in the control of neuronal properties was studied in a class of bursting pacemaker cells, the left upper-quadrant bursting neurons (cells L2, L3, L4, and L6) of the abdominal ganglion of Aplysia. These cells display a regular burst-firing pattern that is controlled by cyclic changes of intracellular Ca$\sp{2+}$ that occur during the bursting rhythm. The characteristic bursting pattern of these neurons occurs within a range of membrane potentials ($-35$ to $-50$ mV) called the pacemaker range. Intracellular pressure injection of inositol 1,4,5-trisphosphate (IP$\sb3$) altered the bursting rhythm of the bursting cells. Injection of IP$\sb3$ induced a brief depolarization that was followed by a long-lasting (2-15 min) hyperpolarization. When cells were voltage-clamped at potentials within the pacemaker range, injection of IP$\sb3$ generally induced a biphasic response that had a total duration of 2-15 min. An initial inward shift in holding current (I$\sb{\rm in}$), which lasted 5-120 sec, was followed by a slow outward shift in holding current (I$\sb{\rm out}$). At membrane potentials more negative than $-40$ mV, I$\sb{\rm in}$ was associated with a small and relatively voltage-independent increase in membrane conductance. I$\sb{\rm in}$ was not blocked by bath application of TTX or Co$\sp{2+}$. Although I$\sb{\rm in}$ was activated by injection of IP$\sb3$, it was not blocked by iontophoretic injection of ethyleneglycol-bis-(beta-aminoethyl ether), N, N$\sp\prime$-tetraacetic acid (EGTA) sufficient to block the Ca$\sp{2+}$-activated inward tail current (I$\sb{\rm B}$).^ Long-term (lasting at least 24 hours) effects of adenylate cyclase activation were examined in a well characterized class of mechanosensory neurons in Aplysia. The injected cells were analyzed 24 hours later by two-electrode voltage-clamp techniques. We found that K$\sp+$ currents of these cells were reduced 24 hours after injection of cAMP. The currents that were reduced by cAMP were very similar to those found to be reduced 24 hours after behavioral sensitization. These results suggest that cAMP is part of the intracellular signal that induces long-term sensitization in Aplysia. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensitization is a simple form of learning which refers to an enhancement of a behavioral response resulting from an exposure to a novel stimulus. While sensitization is found throughout the animal world, little is known regarding the underlying neural mechanisms. By taking advantage of the simple nervous system of the marine mollusc Aplysia, I have begun to examine the cellular and molecular mechanisms underlying this simple form of learning. In an attempt to determine the generality of the mechanisms of neuromodulation underlying sensitization, I have investigated and compared the modulation of neurons involved in two defensive behaviors in Aplysia, the defensive inking response and defensive tail withdrawal.^ The motor neurons that produce the defensive release of ink receive a slow decreased conductance excitatory postsynaptic potential (EPSP) in response to sensitizing stimuli. Using electrophysiological techniques, it was found that serotonin (5-HT) mimicked the physiologically produced slow EPSP. 5-HT produced its response through a reduction in a voltage-independent conductance to K('+). The 5-HT sensitive K('+) conductance of the ink motor neurons was separate from the fast K('+), delayed K('+), and Ca('2+)-activated K('+) conductances found in these and other molluscan neurons. 5-HT was shown to produce a decrease in K('+) conductance in the ink motor neurons through an elevation of cellular cAMP.^ The mechanosensory neurons that participate in the defensive tail withdrawal response are also modulated by sensitizing stimuli through the action of 5-HT. Using electrophysiological techniques, it was found that 5-HT modulated the tail sensory neurons through a reduction in a voltage-dependent conductance to K('+). The serotonin-sensitive K('+) conductance was found to be largely a Ca('2+)-activated K('+) conductance. Much like the ink motor neurons, 5-HT produced its modulation through an elevation of cellular cAMP. While the actual K('+) conductance modulated by 5-HT in these two classes of neurons differs, the following generalizations can be made: (1) the effects of sensitizing stimuli are mimicked by 5-HT, (2) 5-HT produces its effect through an elevation of cellular cAMP, and (3) the conductance to K('+) is modulated by 5-HT. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca2+ handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca2+ dynamics in this cell type. We found that in hepatocytes isolated from Hint2−/− mice, the frequency of Ca2+ oscillations induced by 1 μM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca2+ pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2−/− mice; we found that Hint2 accelerates Ca2+ pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca2+ in suspensions of mitochondria. This prediction was then confirmed experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although AST-to-platelet ratio index (APRI) and FIB-4 have been compared with liver biopsy in patients with hepatitis C virus (HCV), hepatitis B virus (HBV), HIV/HCV co-infection, and HIV/HBV co-infection, Johannessen and Lemoine stress that they have not been validated in HIV mono-infected populations in SSA. However, this is unlikely to occur because liver biopsy does not play a role in HIV management and the procedure carries its own risks for complication. Clinicians using APRI and FIB-4 in this setting should be aware of this limitation and should interpret test results in the context of each patient's clinical scenario. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Visit-to-visit variability in systolic blood pressure (SBP) is associated with an increased risk of stroke and was reduced in randomized trials by calcium channel blockers and diuretics but not by renin-angiotensin system inhibitors. However, time of day effects could not be determined. Day-to-day variability on home BP readings predicts stroke risk and potentially offers a practical method of monitoring response to variability-directed treatment. METHODS SBP mean, maximum, and variability (coefficient of variation=SD/mean) were determined in 500 consecutive transient ischemic attack or minor stroke patients on 1-month home BP monitoring (3 BPs, 3× daily). Hypertension was treated to a standard protocol. Differences in SBP variability from 3 to 10 days before to 8 to 15 days after starting or increasing calcium channel blockers/diuretics versus renin-angiotensin system inhibitors versus both were compared by general linear models, adjusted for risk factors and baseline BP. RESULTS Among 288 eligible interventions, variability in SBP was reduced after increased treatment with calcium channel blockers/diuretics versus both versus renin-angiotensin system inhibitors (-4.0 versus 6.9 versus 7.8%; P=0.015), primarily because of effects on maximum SBP (-4.6 versus -1.0 versus -1.0%; P=0.001), with no differences in effect on mean SBP. Class differences were greatest for early-morning SBP variability (3.6 versus 17.0 versus 38.3; P=0.002) and maximum (-4.8 versus -2.0 versus -0.7; P=0.001), with no effect on midmorning (P=0.29), evening (P=0.65), or diurnal variability (P=0.92). CONCLUSIONS After transient ischemic attack or minor stroke, calcium channel blockers and diuretics reduced variability and maximum home SBP, primarily because of effects on morning readings. Home BP readings enable monitoring of response to SBP variability-directed treatment in patients with recent cerebrovascular events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are two severe autoimmune bullous diseases of the mucosae and/or skin associated with autoantibodies directed against desmoglein (Dsg) 3 and/or Dsg1. These two desmosomal cadherins, typifying stratified epithelia, are components of cell adhesion complexes called desmosomes and represent extra-desmosomal adhesion receptors. We herein review the advances in our understanding of the immune response underlying pemphigus, including human leucocyte antigen (HLA) class II-associated genetic susceptibility, characteristics of pathogenic anti-Dsg antibodies, antigenic mapping studies as well as findings about Dsg-specific B and T cells. The pathogenicity of anti-Dsg autoantibodies has been convincingly demonstrated. Disease activity and clinical phenotype correlate with anti-Dsg antibody titers and profile while passive transfer of anti-Dsg IgG from pemphigus patients' results in pemphigus-like lesions in neonatal and adult mice. Finally, adoptive transfer of splenocytes from Dsg3-knockout mice immunized with murine Dsg3 into immunodeficient mice phenotypically recapitulates PV. Although the exact pathogenic mechanisms leading to blister formation have not been fully elucidated, intracellular signaling following antibody binding has been found to be necessary for inducing cell-cell dissociation, at least for PV. These new insights not only highlight the key role of Dsgs in maintenance of tissue homeostasis but are expected to progressively change pemphigus management, paving the way for novel targeted immunologic and pharmacologic therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.