932 resultados para physical layer network coding
Resumo:
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.
Resumo:
Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation.
Resumo:
Distributed source coding (DSC) has recently been considered as an efficient approach to data compression in wireless sensor networks (WSN). Using this coding method multiple sensor nodes compress their correlated observations without inter-node communications. Therefore energy and bandwidth can be efficiently saved. In this paper, we investigate a randombinning based DSC scheme for remote source estimation in WSN and its performance of estimated signal to distortion ratio (SDR). With the introduction of a detailed power consumption model for wireless sensor communications, we quantitatively analyze the overall network energy consumption of the DSC scheme. We further propose a novel energy-aware transmission protocol for the DSC scheme, which flexibly optimizes the DSC performance in terms of either SDR or energy consumption, by adapting the source coding and transmission parameters to the network conditions. Simulations validate the energy efficiency of the proposed adaptive transmission protocol. © 2007 IEEE.
Resumo:
Smart cameras allow pre-processing of video data on the camera instead of sending it to a remote server for further analysis. Having a network of smart cameras allows various vision tasks to be processed in a distributed fashion. While cameras may have different tasks, we concentrate on distributed tracking in smart camera networks. This application introduces various highly interesting problems. Firstly, how can conflicting goals be satisfied such as cameras in the network try to track objects while also trying to keep communication overhead low? Secondly, how can cameras in the network self adapt in response to the behavior of objects and changes in scenarios, to ensure continued efficient performance? Thirdly, how can cameras organise themselves to improve the overall network's performance and efficiency? This paper presents a simulation environment, called CamSim, allowing distributed self-adaptation and self-organisation algorithms to be tested, without setting up a physical smart camera network. The simulation tool is written in Java and hence allows high portability between different operating systems. Relaxing various problems of computer vision and network communication enables a focus on implementing and testing new self-adaptation and self-organisation algorithms for cameras to use.
Resumo:
Link quality-based rate adaptation has been widely used for IEEE 802.11 networks. However, network performance is affected by both link quality and random channel access. Selection of transmit modes for optimal link throughput can cause medium access control (MAC) throughput loss. In this paper, we investigate this issue and propose a generalised cross-layer rate adaptation algorithm. It considers jointly link quality and channel access to optimise network throughput. The objective is to examine the potential benefits by cross-layer design. An efficient analytic model is proposed to evaluate rate adaptation algorithms under dynamic channel and multi-user access environments. The proposed algorithm is compared to link throughput optimisation-based algorithm. It is found rate adaptation by optimising link layer throughput can result in large performance loss, which cannot be compensated by the means of optimising MAC access mechanism alone. Results show cross-layer design can achieve consistent and considerable performance gains of up to 20%. It deserves to be exploited in practical design for IEEE 802.11 networks.
Resumo:
An experimental comparison of information features used by neural network is performed. The sensing method was used. Suboptimal classifier agreeable to the gaussian model of the training data was used as a probe. Neural nets with architectures of perceptron and feedforward net with one hidden layer were used. The experiments were carried out with spatial ultrasonic data, which are used for car’s passenger safety system neural controller learning. In this paper we show that a neural network doesn’t fully make use of gaussian components, which are first two moment coefficients of probability distribution. On the contrary, the network can find more complicated regularities inside data vectors and thus shows better results than suboptimal classifier. The parallel connection of suboptimal classifier improves work of modular neural network whereas its connection to the network input improves the specialization effect during training.
Resumo:
On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.
Resumo:
IEEE 802.15.4 networks has the features of low data rate and low power consumption. It is a strong candidate technique for wireless sensor networks and can find many applications to smart grid. However, due to the low network and energy capacities it is critical to maximize the bandwidth and energy efficiencies of 802.15.4 networks. In this paper we propose an adaptive data transmission scheme with CSMA/CA access control, for applications which may have heavy traffic loads such as smart grids. The adaptive access control is simple to implement. Its compatibility with legacy 802.15.4 devices can be maintained. Simulation results demonstrate the effectiveness of the proposed scheme with largely improved bandwidth and power efficiency. © 2013 International Information Institute.
Resumo:
In the world, scientific studies increase day by day and computer programs facilitate the human’s life. Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN) algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder, displacement, power, weight, acceleration and vehicle production year are used as input data and miles per gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the problem has a nonlinear structure, multi layer are used in our model.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.
Resumo:
Objectives Understanding the impact of the counterion on the properties of an acidic or basic drug may influence the choice of salt form, especially for less potent drugs with a high drug load per unit dose. The aim of this work was to determine the influence of the hydrogen bonding potential of the counterion on the crystal structure of salts of the poorly soluble, poorly compressible, acidic drug gemfibrozil and to correlate these with mechanical properties. Methods Compacts of the parent drug and the salts were used to determine Young's modulus of elasticity using beam bending tests. Crystal structures were determined previously from X-ray powder diffraction data. Key findings The free acid, tert-butylamine, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropan-1, 3-diol salts had a common crystal packing motif of infinite hydrogen-bonded chains with cross-linking between pairs of adjacent chains. The tromethamine (trsi) salt, with different mechanical properties, had a two-dimensional sheet-like network of hydrogen bonds, with slip planes, forming a stiffer compact. Conclusions The type of counter ion is important in determining mechanical properties and could be selected to afford slip and plastic deformation. © 2010 Royal Pharmaceutical Society of Great Britain.
Resumo:
In recent years, the internet has grown exponentially, and become more complex. This increased complexity potentially introduces more network-level instability. But for any end-to-end internet connection, maintaining the connection's throughput and reliability at a certain level is very important. This is because it can directly affect the connection's normal operation. Therefore, a challenging research task is to improve a network's connection performance by optimizing its throughput and reliability. This dissertation proposed an efficient and reliable transport layer protocol (called concurrent TCP (cTCP)), an extension of the current TCP protocol, to optimize end-to-end connection throughput and enhance end-to-end connection fault tolerance. The proposed cTCP protocol could aggregate multiple paths' bandwidth by supporting concurrent data transfer (CDT) on a single connection. Here concurrent data transfer was defined as the concurrent transfer of data from local hosts to foreign hosts via two or more end-to-end paths. An RTT-Based CDT mechanism, which was based on a path's RTT (Round Trip Time) to optimize CDT performance, was developed for the proposed cTCP protocol. This mechanism primarily included an RTT-Based load distribution and path management scheme, which was used to optimize connections' throughput and reliability. A congestion control and retransmission policy based on RTT was also provided. According to experiment results, under different network conditions, our RTT-Based CDT mechanism could acquire good CDT performance. Finally a CWND-Based CDT mechanism, which was based on a path's CWND (Congestion Window), to optimize CDT performance was introduced. This mechanism primarily included: a CWND-Based load allocation scheme, which assigned corresponding data to paths based on their CWND to achieve aggregate bandwidth; a CWND-Based path management, which was used to optimize connections' fault tolerance; and a congestion control and retransmission management policy, which was similar to regular TCP in its separate path handling. According to corresponding experiment results, this mechanism could acquire near-optimal CDT performance under different network conditions.