953 resultados para photorefractive crystals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterization of the insecticidal and hemolytic activity of solubilized crystal proteins of Bacillus thuringiensis (Bt) subsp. medellin (Btmed) was performed and compared to solubilized crystal proteins of isolates 1884 of B. thuringiensis subsp. israelensis (Bti) and isolate PG-14 of B. thuringiensis subsp. morrisoni (Btm). In general, at acid pH values solubilization of the Bt crystalline parasporal inclusions (CPI) was lower than at alkaline pH. The larvicidal activity demonstrated by the CPI of Btmed indicated that optimal solubilization of CPI takes place at a pH value of 11.3, in Bti at pH values from 5.03 to 11.3 and in Btm at pH values from 9.05 to 11.3. Hemolytic activity against sheep red blood cells was mainly found following extraction at pH 11.3 in all Bt strains tested. Polyacrylamide gel electrophoresis under denaturing conditions revealed that optimal solubilization of the CPI in all Bt strains takes place at the alkaline pH values from 9.05 to 11.3. An enriched preparation of Btmed crystals was obtained, solubilized and crystal proteins were separated on a size exclusion column (Sephacryl S-200). Three main protein peaks were observed on the chromatogram. The first peak had two main proteins that migrate between 90 to 100 kDa. These proteins are apparently not common to other Bt strains isolated to date. The second and third peaks obtained from the size exclusion column yielded polypeptides of 68 and 28-30 kDa, respectively. Each peak independently, showed toxicity against 1st instar Culex quinquefasciatus larvae. Interestingly, combinations of the fractions corresponding to the 68 and 30 kDa protein showed an increased toxicity. These results suggest that the 94 kDa protein is an important component of the Btmed toxins with the highest potency to kill mosquito larvae. When crystal proteins of Bti were probed with antisera raised independently against the three main protein fractions of Btmed, the only crystal protein that showed cross reaction was the 28 kDa protein. These data suggest that Btmed could be an alternative bacterium for mosquito control programs in case mosquito larval resistance emerges to Bti toxic proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-six species of white-rotting Agaricomycotina fungi (Basidiomycota) were screened for their ability to produce calcium-oxalate (CaOx) crystals in vitro. Most were able to produce CaOx crystals in malt agar medium in the absence of additional calcium. In the same medium enriched with Ca2+, all the species produced CaOx crystals (weddellite or whewellite). Hyphae of four species (Ganoderma lucidum, Polyporus ciliatus, Pycnoporus cinnabarinus, and Trametes versicolor) were found coated with crystals (weddellite/whewellite). The production of CaOx crystals during the growth phase was confirmed by an investigation of the production kinetics for six of the species considered in the initial screening (Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus, P. cinnabarinus, Trametes suaveolens, and T. versicolor). However, the crystals produced during the growth phase disappeared from the medium over time in four of the six species (P. citrinopileatus, P. eryngii, P. cinnabarinus, and T. suaveolens). For P. cinnabarinus, the disappearance of the crystals was correlated with a decrease in the total oxalate concentration measured in the medium from 0.65 μg mm−2 (at the maximum accumulation rate) to 0.30 μg mm−2. The decrease in the CaOx concentration was correlated with a change in mycelia morphology. The oxalate dissolution capability of all the species was also tested in a medium containing calcium oxalate as the sole source of carbon (modified Schlegel medium). Three species (Agaricus blazei, Pleurotus tuberregium, and P. ciliatus) presented a dissolution halo around the growth zone. This study shows that CaOx crystal production is a widespread phenomenon in white-rot fungi, and that an excess of Ca2+ can enhance CaOx crystal production. In addition, it shows that some white-rot fungal species are capable of dissolving CaOx crystals after growth has ceased. These results highlight a diversity of responses around the production or dissolution of calcium oxalate in white-rot fungi and reveal an unexpected potential importance of fungi on the oxalate cycle in the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacillus thuringiensis (Bt) subsp. medellin (Btmed) produces parasporal crystalline inclusions which are toxic to mosquito larvae. It has been shown that the inclusions of this bacterium contain mainly proteins of 94, 68 and 28-30 kDa. EcoRI partially digested total DNA of Btmed was cloned by using the Lambda Zap II cloning kit. Recombinant plaques were screened with a mouse policlonal antibody raised against the 94 kDa crystal protein of Btmed. One of the positive plaques was selected, and by in vivo excision, a recombinant pBluescript SK(-) was obtained. The gene encoding the 94 kDa toxin of Btmed DNA was cloned in a 4.4 kb DNA fragment. Btmed DNA was then subcloned as a EcoRI/EcoRI fragment into the shuttle vector pBU4 producing the recombinant plasmid pBTM3 and used to transform by electroporation Bt subsp. israelensis (Bti) crystal negative strain 4Q2-81. Toxicity to mosquito larvae was estimated by using first instar laboratory reared Aedes aegypti, and Culex quinquefasciatus larvae challenged with whole crystals. Toxicity results indicate that the purified inclusions from the recombinant Bti strain were toxic to all mosquito species tested, although the toxicity was not as high as the one produced by the crystal of the Btmed wild type strain. Poliacrylamide gel electrophoresis indicate that the inclusions produced by the recombinant strain Bti (pBTM3) were mainly composed of the 94 kDa protein of Btmed, as it was determined by Western blot

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several quartz crystals from three different Alpine vein localities and of known petrologic setting and evolution have been examined for possible elemental sector zoning in order to help to constrain the mechanisms of such trace element incorporation. Using different in situ techniques (EMPA, LA-ICPMS, SIMS, FTIR-spectroscopy), it was established that Al and Li concentrations can exceed several hundreds of ppma for distinct growth zones within crystals formed at temperatures of about 300 degrees C or less and that also display patterns of cyclic growth when examined with cathodoluminescence. In contrast, crystals formed at temperatures closer to 400 degrees C and without visible cyclic growth have low concentrations of Al and Li as well as other trace elements. Al and Li contents are correlated along profiles measured within the crystals and in general their proportion does not change along the profiles. No relationships were found between Al, Na, and K, and germanium has a qualitative relationship with Al. FTIR spectra also show OH(-) absorption bands within the quartz, with higher amplitudes in zones rich in Al and Li. Sector zoning is present. It is most pronounced between prismatic and rhombohedral faces of the same growth zone, but also between the rhombohedral faces of r and z, which contain different amounts of trace elements. The sector zoning is also expressed by changes in the Li/Al ratio, with higher ratios in 17 compared to r faces. It is concluded that the incorporation of trace elements into hydrothermal quartz from Alpine veins is influenced by growth mechanisms and surface-structures of the growing quartz crystals, the influence of which may change as a function of temperature, pH, as well as the chemical composition of the fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quartz veins ranging in size from less than 50 cm length and 5 cm width to greater than 10 m in length and 5 m in width are found throughout the Central Swiss Alps. In some cases, the veins are completely filled with milky quartz, while in others, sometimes spectacular void-filling quartz crystals are found. The style of vein filling and size is controlled by host rock composition and deformation history. Temperatures of vein formation, estimated using stable isotope thermometry and mineral equilibria, cover a range of 450 degrees C down to 150 degrees C. Vein formation started at 18 to 20 Ma and continued for over 10 My. The oxygen isotope values of quartz veins range from 10 to 20 permil, and in almost all cases are equal to those of the hosting lithology. The strongly rock-buffered veins imply a low fluid/rock ratio and minimal fluid flow. In order to explain massive, nearly morromineralic quartz formation without exceptionally large fluid fluxes, a mechanism of differential pressure and silica diffusion, combined with pressure solution, is proposed for early vein formation. Fluid inclusions and hydrous minerals in late-formed veins have extremely low delta D values, consistent with meteoric water infiltration. The change from rock-buffered, static fluid to infiltration from above can be explained in terms of changes in the large-scale deformation style occurring between 20 and 15 Ma. The rapid cooling of the Central Alps identified in previous studies may be explained in part, by infiltration of cold meteoric waters along fracture systems down to depths of 10 km or more. An average water flux of 0.15 cm 3 cm(-2)yr(-1) entering the rock and reemerging heated by 40 degrees C is sufficient to cool rock at 10 km depth by 100 degrees C in 5 million years. The very negative delta D values of < -130 permil for the late stage fluids are well below the annual average values measured in meteoric water in the region today. The low fossil delta D values indicate that the Central Alps were at a higher elevation in the Neogene. Such a conclusion is supported by an earlier work, where a paleoaltitude of 5000 meters was proposed on the basis of large erratic boulders found at low elevations far from their origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new hypothesis is formulated to explain the development of rapakivi texture in and around the mafic enclaves of porphyritic granitoids, i.e. in environments involving magma mixing and mingling. The formation of a plagioclase mantle around alkali feldspar megacrysts is attributed to the localized presence of a melt resulting from the reaction of these megacrysts, with host hybrid magma with which they are in disequilibrium. This feldspathic melt adheres to the resorbed crystals and is virtually immiscible with the surrounding magma. Its composition is modified in terms of the relative proportions of K2O, Na2O, and CaO through selective diffusion of these elements, thus allowing the specific crystallization of andesine. With decreasing temperature, the K-feldspar, again stable, crystallizes along with the plagioclase, leading to mixed mantle structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cleusonite, (Pb,Sr)(U4+,U6+) (Fe2+,Zn)(2) (Ti,Fe2+,Fe3+)(18) (O,OH)(38), is a new member of the crichtonite group. It was found at two occurrences in greenschist facies metamorphosed gneissic series of the Mont Fort and Siviez-Mischabel Nappes in Valais, Switzerland (Cleuson and Bella Tolla summit), and named after the type locality. It occurs as black opaque cm-sized tabular crystals with a bright sub-metallic lustre. The crystals consist of multiple rhombohedra and hexagonal prisms that are generally twinned. Measured density is 4.74(4) g/cm(3) and can be corrected to 4.93(12) g/cm(3) for macroscopic swelling due to radiation damage; the calculated density varies from 5.02(6) (untreated) to 5.27(5) (heat-treated crystals); the difference is related to the cell swelling due to the metamictisation. The empirical formula for cleusonite from Cleuson is (Pb0.89Sr0.12)(Sigma=1.01) (U0.79+4U0.30+6)(Sigma=1.09) (Fe1.91+2Zn0.09)(Sigma=2.00) (Ti11.80Fe3.44+2Fe2.33+3V0.19+5Mn0.08Al0.07)(Sigma=17.90) [O-35.37(OH)(2.63)](Sigma=38). Cations were measured by electron microprobe, the presence of structural (OH) was confirmed by infrared spectroscopy and the U6+/U4+ and Fe2+/Fe3+ ratios were determined by X-ray photoelectron spectroscopy. Cleusonite is partly metamict, and untreated crystals only show three major X-ray diffraction peaks. Because of this radiation-damaged state, the mineral appears optically isotropic and shows a light-grey to white colour in reflected polarized light. Cleusonite is trigonal, space group R $(3) over bar $, and unit-cell parameters are varying from a = 10.576(3), c = 21.325(5) angstrom (untreated crystal) to a = 10.4188(6), c = 20.942(1) angstrom (800 degrees C treatment) and to a = 10.385(2), c = 20.900(7) angstrom (1000 degrees C treatment). The three cells give a common axial ratio 2.01 (1), which is identical to the measured morphological one 2.04(6). ne name cleusonite also applies to the previously described ``uranium-rich senaite'' from Alinci (Macedonia) and the ``plumbodavidite'' from Huanglongpu (China).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recrystallization rims are a common feature of zircon crystals that underwent metamorphism. We present a microstructural and microchemical study of partially recrystallized zircon grains collected in polymetamorphic migmatites (Valle d'Arbedo, Ticino, Switzerland). The rims are bright in cathodo-luminescence (CL), with sharp and convex contacts characterized by inward-penetrating embayments transgressing igneous zircon cores. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and transmission electron microscopy (TEM) imaging indicate that the rims are chemically and microstructurally different from the cores. The rims are strongly depleted in REE, with concentrations up to two orders of magnitude lower than in the cores, indicating a significant loss of REE during zircon recrystallization. Enrichment in non-formula elements, such as Ca, has not been observed in the rims. The microstructure of zircon cores shows a dappled intensity at and below the 100 nm scale, possibly due to radiation damage. Other defects such as pores and dislocations are absent in the core except at healed cracks. Zircon rims are mostly dapple-free, but contain nanoscale pores and strain centers, interpreted as fluid inclusions and chemical residues, respectively. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages show that the recrystallization of the rims took place >200 Ma ago when the parent igneous zircon was not metamict. The chemical composition and the low-Ti content of the rims indicate that they form at sub-solidus temperatures (550-650 degrees C). Recrystallization rims in Valle d'Arbedo zircon are interpreted as the result of the migration of chemical reaction fronts in which fluid triggered in situ and contemporaneous interface-coupled dissolution-reprecipitation mechanisms. This study indicates that strong lattice strain resulting from the incorporation of a large amount of impurities and structural defects is not a necessary condition for zircon to recrystallize. Our observations suggest that the early formation of recrystallization rims played a major role in preserving zircon from the more recent Alpine metamorphic overprint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agates from the Bighorn district in Montana (USA), the so-called Dryhead area, and their adjacent host rocks have been examined in the present study. Analyses by XRD, polarizing microscopy, LA-ICP-MS, cathodoluminescence (CL), SEM and of oxygen isotopes were performed to obtain information surrounding the genesis of this agate type. Investigations of the agate microstructure by polarizing microscopy and CL showed that chalcedony layers and macrocrystalline quartz crystals may have formed by crystallization from the same silica source by a process of self-organization. High defect densities and internal structures (e. g. sector zoning) of quartz indicate that crystallization went rapidly under non-equilibrium conditions. Most trace-element contents in macrocrystalline quartz are less than in chalcedony due to a process of `self-purification', which also caused the formation of Fe oxide inclusions and spherules. Although the agates formed in sedimentary host rocks, analytical data indicate participation of hydrothermal fluids during agate formation. Trace elements (REE distribution patterns, U contents up to 70 ppm) and CL features of agate (transient blue CL), as well as associated minerals (fluorite, REE carbonates) point to the influence of hydrothermal processes on the genesis of the Dryhead agates. However, formation temperatures <120 degrees C were calculated from O-isotope compositions between 28.9 parts per thousand (quartz) and 32.2 parts per thousand (chalcedony).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how uric acid crystals provoke inflammation is crucial to improving our management of acute gout. It is well known that urate crystals stimulate monocytes and macrophages to elaborate inflammatory cytokines, but the tissue response of the synovium is less well understood. Microarray analysis of mRNA expression by these lining cells may help to delineate the genes that are modulated. Employing a murine air-pouch model, a number of genes expressed by innate immune cells were found to be rapidly upregulated by monosodium urate crystals. These findings provide new research avenues to investigate the physiopathology of gouty inflammation, and may eventually lead to new therapeutic targets in acute gout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterium Bacillus thuringiensis (Bt) produces parasporal crystals containing delta-endotoxins responsible for selective insecticidal activity on larvae. Upon ingestion, these crystals are solubilized in the midgut lumen and converted into active toxins that bind to receptors present on the microvilli causing serious damage to the epithelial columnar cells. We investigated the effect of these endotoxins on larvae of the Simulium pertinax, a common black fly in Brazil, using several concentrations during 4 h of the serovar israelensis strain IPS-82 (LFB-FIOCRUZ 584), serotype H-14 type strain of the Institute Pasteur, Paris. Light and electron microscope observations revealed, by time and endotoxin concentration, increasing damages of the larvae midgut epithelium. The most characteristic effects were midgut columnar cell vacuolization, microvilli damages, epithelium cell contents passing into the midgut lumen and finally the cell death. This article is the first report of the histopathological effects of the Bti endotoxins in the midgut of S. pertinax larvae and the data obtained may contribute to a better understanding of the mode of action of this bacterial strain used as bioinsecticide against black fly larvae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to obtain experimental evidence that phlebotomine saliva is actually ingested during the carbohydrate ingestion phase (before and after blood digestion). The ingestion of carbohydrate was simulated as it occurs in the field by offering the insects balls of cotton soaked in sucrose, sucrose crystals or orange juice cells. The results obtained here showed that ingestion occurred under each condition investigated, as indicated by the presence of apyrase, an enzyme used as a marker to detect saliva in the insect gut and/or carbohydrate sources. Saliva ingestion by phlebotomine during the carbohydrate ingestion phase is important to explain how it could promote starch digestion and to trigger Leishmania promastigotes to follow a differentiation pathway as proposed previously by some authors.