954 resultados para perfusion-weighted MRI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MR imaging is currently regarded as a pivotal technique for the assessment of a variety of musculoskeletal conditions. Diffusion-weighted MR imaging (DWI) is a relatively recent sequence that provides information on the degree of cellularity of lesions. Apparent diffusion coefficient (ADC) value provides information on the movement of water molecules outside the cells. The literature contains many studies that have evaluated the role of DWI in musculoskeletal diseases. However, to date they yielded conflicting results on the use and the diagnostic capabilities of DWI in the area of musculoskeletal diseases. However, many of them have showed that DWI is a useful technique for the evaluation of the extent of the disease in a subset of musculoskeletal cancers. In terms of tissue characterization, DWI may be an adjunct to the more conventional MR imaging techniques but should be interpreted along with the signal of the lesion as observed on conventional sequences, especially in musculoskeletal cancers. Regarding the monitoring of response to therapy in cancer or inflammatory disease, the use of ADC value may represent a more reliable additional tool but must be compared to the initial ADC value of the lesions along with the knowledge of the actual therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. METHODS: A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. RESULTS: The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3) . Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. CONCLUSION: The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have proposed a global denoising of the diffusion data using spatial information prior to reconstruction, while others promote spatial regularisation through an additional empirical prior on the diffusion image at each q-space point. Our approach reconciles voxelwise sparsity and spatial regularisation and defines a spatially structured FOD sparsity prior, where the structure originates from the spatial coherence of the fibre orientation between neighbour voxels. The method is shown, through both simulated and real data, to enable accurate FOD reconstruction from a much lower number of q-space samples than the state of the art, typically 15 samples, even for quite adverse noise conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Magnetic resonance imaging (MRI) of patients with conventional implantable cardioverter-defibrillators (ICD) is contraindicated. OBJECTIVES: This multicenter, randomized trial evaluated safety and efficacy of a novel ICD system specially designed for full-body MRI without restrictions on heart rate or pacing dependency. The primary safety objective was >90% freedom from MRI-related events composite endpoint within 30 days post-MRI. The primary efficacy endpoints were ventricular pacing capture threshold and ventricular sensing amplitude. METHODS: Subjects received either a single- or dual-chamber ICD. In a 2:1 randomization, subjects either underwent MRI at 1.5-T of the chest, cervical, and head regions to maximize radiofrequency exposure up to 2 W/kg specific absorption rate and gradient field exposure to 200 T/m/s per axis (MRI group, n = 175), or they underwent a 1-h waiting period without MRI (control group, n = 88). A subset of MRI patients underwent ventricular fibrillation induction testing post-MRI to characterize defibrillation function. RESULTS: In 42 centers, 275 patients were enrolled (76% male, age 60.4 ± 13.8 years). The safety endpoint was met with 100% freedom from the composite endpoint (p < 0.0001). Both efficacy endpoints were met with minimal differences in the proportion of MRI and control patients who demonstrated a ≤0.5 V increase in ventricular pacing capture threshold (100% MRI vs. 98.8% control, noninferiority p < 0.0001) or a ≤50% decrease in R-wave amplitude (99.3% MRI vs. 98.8% control, noninferiority p = 0.0001). A total of 34 ventricular tachyarrhythmia/ventricular fibrillation episodes (20 induced; 14 spontaneous) occurred in 24 subjects post-MRI, with no observed effect on sensing, detection, or treatment. CONCLUSIONS: This is the first randomized clinical study of an ICD system designed for full-body MRI at 1.5-T. These data support that the system is safe and the MRI scan does not adversely affect electrical performance or efficacy. (Confirmatory Clinical Trial of the Evera MRI System for Conditionally-Safe MRI Access; NCT02117414).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cell release of nitric oxide (NO) is a defining characteristic of nondiseased arteries, and abnormal endothelial NO release is both a marker of early atherosclerosis and a predictor of its progression and future events. Healthy coronaries respond to endothelial-dependent stressors with vasodilatation and increased coronary blood flow (CBF), but those with endothelial dysfunction respond with paradoxical vasoconstriction and reduced CBF. Recently, coronary MRI and isometric handgrip exercise (IHE) were reported to noninvasively quantify coronary endothelial function (CEF). However, it is not known whether the coronary response to IHE is actually mediated by NO and/or whether it is reproducible over weeks. To determine the contribution of NO, we studied the coronary response to IHE before and during infusion of N(G)-monomethyl-l-arginine (l-NMMA, 0.3 mg·kg(-1)·min(-1)), a NO-synthase inhibitor, in healthy volunteers. For reproducibility, we performed two MRI-IHE studies ∼8 wk apart in healthy subjects and patients with coronary artery disease (CAD). Changes from rest to IHE in coronary cross-sectional area (%CSA) and diastolic CBF (%CBF) were quantified. l-NMMA completely blocked normal coronary vasodilation during IHE [%CSA, 12.9 ± 2.5 (mean ± SE, placebo) vs. -0.3 ± 1.6% (l-NMMA); P < 0.001] and significantly blunted the increase in flow [%CBF, 47.7 ± 6.4 (placebo) vs. 10.6 ± 4.6% (l-NMMA); P < 0.001]. MRI-IHE measures obtained weeks apart strongly correlated for CSA (P < 0.0001) and CBF (P < 0.01). In conclusion, the normal human coronary vasoactive response to IHE is primarily mediated by NO. This noninvasive, reproducible MRI-IHE exam of NO-mediated CEF promises to be useful for studying CAD pathogenesis in low-risk populations and for evaluating translational strategies designed to alter CAD in patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in $L^{2}(e^{-2\phi}) $ where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous Cauchy-Riemann equation and we characterize the compactness of this operator in terms of $\Delta\phi$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). METHODS: Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. RESULTS: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. CONCLUSION: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One motive for behaving as the agent of another"s aggression appears to be anchored in as yet unelucidated mechanisms of obedience to authority. In a recent partial replication of Milgram"s obedience paradigm within an immersive virtual environment, participants administered pain to a female virtual human and observed her suffering. Whether the participants" response to the latter was more akin to other-oriented empathic concern for her well-being or to a self-oriented aversive state of personal distress in response to her distress is unclear. Using the stimuli from that study, this event-related fMRI-based study analysed brain activity during observation of the victim in pain versus not in pain. This contrast revealed activation in pre-defi ned brain areas known to be involved in affective processing but not in those commonly associated with affect sharing (e.g., ACC and insula). We then examined whether different dimensions of dispositional empathy predict activity within the same pre-defi ned brain regions: While personal distress and fantasy (i.e., tendency to transpose oneself into fi ctional situations and characters) predicted brain activity, empathic concern and perspective taking predicted no change in neuronal response associated with pain observation. These exploratory fi ndings suggest that there is a distinct pattern of brain activity associated with observing the pain-related behaviour of the victim within the context of this social dilemma, that this observation evoked a self-oriented aversive state of personal distress, and that the objective"reality" of pain is of secondary importance for this response. These fi ndings provide a starting point for experimentally more rigorous investigation of obedience.

Relevância:

20.00% 20.00%

Publicador: