980 resultados para peak flow
Resumo:
We have discussed here the flow of a dilute suspension of rigid particles in Newtonian fluid in slowly varying tubes characterized by a small parameter ε. Solutions are presented in the form of asymptotic expansions in powers of ε. The effect of the suspension on the fluid is described by two parameters β and γ which depend on the volume fraction of the particles which we assume to be small. It is found that the presence of the particles accelerate the process of eddy formation near the constriction and shifts the point of separation.
Resumo:
The oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. The aeration process can be analyzed in two ways such as batch and continuous systems. The process behaviors of batch and continuous flow systems are different from each other. The experimental and numerical results obtained through the batch systems cannot be relied on and applied for the designing of the continuous aeration tank. Based on the experimentation on batch and continuous type systems, the present work compares the performance of both the batch and continuous surface aeration systems in terms of their oxygen transfer capacity and power consumption. A simulation equation developed through experimentation has shown that continuous flow surface aeration systems are taking more energy than the batch systems. It has been found that batch systems are economical and better for the field application but not feasible where large quantity of wastewater is produced.
Resumo:
The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter lambda, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.
Resumo:
Amongv arioums ethodtsh,e t ransmissliionne o r thei mpedantcueb em ethohda sb eenm ospt opulafro r thee xperimenetavla luatioonf thea cousticiaml pedanocef a terminatioTnh. ee xistinmg ethodisn,c luding theo nesre porteeda rlierb, y thea uthorrse quirleo catioonf thes oundp ressumrei nima nd/orm axima, or elsem akeu se0 f somei terativep rocedureTsh. e presenpt aperd ealsw ith a methodo f analysios f standinwga vews hichd oesn otd epenodn anyo f thesein volvepdr ocedureIts i.s applicabtloe thec aseo f stationarays w ella sm ovingm ediaI.t enableosn to evaluatteh e impedancoef anyp assivbel ackb ox,a s well as the aeroacoustcich aracteristicosf a sourceo f pulsatingg asf low, with the leaste xperimentawl ork andc omputatiotinm ea ndw itht hee xtraa dvantagoef usinga givenim pedanctueb ef or wavelengtahss largea s fourt imesit s lengthA. methodo f externaml easuremenntost, involvinugs eo f anyi mpedance tubef, or evaluatintgh ea eroacouscthica racteristoicf as sourcoef pulsatingga sf lowi s alsod ealtw ith, based on the definition of attenuation or insertion loss of a muffler.
Resumo:
The paper deals with the flow and heat-transfer problem of a steady axisymmetric laminar incompressible boundary layer swirling flow of a fluid through a conical hydrocyclone. The implicit finitedifference scheme is used to solve the partial differential equations governing the flow. The effect of swirl is found to be more pronounced on the longitudinal skin friction than on the tangential skin friction and heat transfer. The skin friction and heat transfer increase with swirl or with longitudinal distance. Swirl also gives rise to velocity overshoot in the longitudinal velocity profiles and the magnitude of the velocity overshoot increases as the swirl parameter increases. The results are found to be in good agreement with those of the local nonsimilarity and momentum integral methods but they differ appreciably from those of the local similarity method except for the longitudinal skin friction which is fairly in good agreement with that of the local similarity method.Die Arbeit beschäftigt sich mit der Strömung und dem Wärmeübergang in einem konischen Zyklon unter der Voraussetzung stationärer, achsensymmetrischer, laminarer, inkompressibler Grenzschichtströmung. Ein implizites Differenzenverfahren wird benutzt, um die partiellen Differentialgleichungen zu lösen. Der Einfluß des Dralls ist besonders ausgeprägt auf die longitudinale Komponente der Oberflächenreibung, weniger dagegen bei der tangentialen Komponente und beim Wärmeübergang. Die Oberflächenreibung und der Wärmeübergang nehmen zu mit dem Drall, sowie mit dem longitudinalen Abstand. Der Drall erzeugt ein Überschießen der Geschwindigkeit in der longitudinalen Abstand. Der Drall erzeugt ein Überschießen der Geschwindigkeit in der Längsrichtung. Die Größe des Überschusses nimmt mit wachsendem Drallparameter zu. Die Resultate stimmen gut mit den Ergebnissen der Theorie der lokalen Nichtähnlichkeit und der Impulsintegralmethode überein. Dagegen weichen sie mit Ausnahme der longitudinalen Komponente der Oberflächenreibung beträchtlich von den Resultaten der Theorie der lokalen Ähnlichkeit ab.
Resumo:
Six models (Simulators) are formulated and developed with all possible combinations of pressure and saturation of the phases as primary variables. A comparative study between six simulators with two numerical methods, conventional simultaneous and modified sequential methods are carried out. The results of the numerical models are compared with the laboratory experimental results to study the accuracy of the model especially in heterogeneous porous media. From the study it is observed that the simulator using pressure and saturation of the wetting fluid (PW, SW formulation) is the best among the models tested. Many simulators with nonwetting phase as one of the primary variables did not converge when used along with simultaneous method. Based on simulator 1 (PW, SW formulation), a comparison of different solution methods such as simultaneous method, modified sequential and adaptive solution modified sequential method are carried out on 4 test problems including heterogeneous and randomly heterogeneous problems. It is found that the modified sequential and adaptive solution modified sequential methods could save the memory by half and as also the CPU time required by these methods is very less when compared with that using simultaneous method. It is also found that the simulator with PNW and PW as the primary variable which had problem of convergence using the simultaneous method, converged using both the modified sequential method and also using adaptive solution modified sequential method. The present study indicates that pressure and saturation formulation along with adaptive solution modified sequential method is the best among the different simulators and methods tested.
Resumo:
Process control systems are designed for a closed-loop peak magnitude of 2dB, which corresponds to a damping coefficient () of 0.5 approximately. With this specified constraint, the designer should choose and/or design the loop components to maintain a constant relative stability. However, the manipulative variable in almost all chemical processes will be the flow rate of a process stream. Since the gains and the time constants of the process will be functions of the manipulative variable, a constant relative stability cannot be maintained. Up to now, this problem has been overcome either by selecting proper control valve flow characteristics or by gain scheduling of controller parameters. Nevertheless, if a wrong control valve selection is made then one has to account for huge loss in controllability or eventually it may lead to an unstable control system. To overcome these problems, a compensator device that can bring back the relative stability of the control system was proposed. This compensator is similar to a dynamic nonlinear controller that has both online and offline information on several factors related to the control system. The design and analysis of the proposed compensator is discussed in this article. Finally, the performance of the compensator is validated by applying it to a two-tank blending process. It has been observed that by using a compensator in the process control system, the relative stability could be brought back to a great extent despite the effects of changes in manipulative flow rate.
Resumo:
A numerical analysis of flow to a dug well in an unconfined aquifer is made, taking into account well storage, elastic storage release, gravity drainage, anisotropy, partial penetration, vertical flow and seepage surface at the well face, and treating the water table in the aquifer and water level in the well as unknown boundaries. The pumped discharge is maintained constant. The solution is obtained by a two-level iterative scheme. The effects of governing parameters on the drawdown, development of seepage surface and contribution from aquifer flow to the total discharge are discussed. The degree of anisotropy and partial penetration are found to be the parameters which affect the flow characteristics most significantly. The effect of anisotropy on the development of seepage surface is very pronounced.
Resumo:
Some errors have been observed in the analytical expression for the resistance to flow (lambda R), and in the computation of shear stress distribution (tau R) in the analysis of Prawal Sinha and Chandan Singh (1). These errors have been rectified in the present analysis. Also, better values have been suggested for the couple stress parameter alpha for getting better results for lambda R and tau R.
Resumo:
The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.
Resumo:
This paper may be considered as a sequel to one of our earlier works pertaining to the development of an upwind algorithm for meshless solvers. While the earlier work dealt with the development of an inviscid solution procedure, the present work focuses on its extension to viscous flows. A robust viscous discretization strategy is chosen based on positivity of a discrete Laplacian. This work projects meshless solver as a viable cartesian grid methodology. The point distribution required for the meshless solver is obtained from a hybrid cartesian gridding strategy. Particularly considering the importance of an hybrid cartesian mesh for RANS computations, the difficulties encountered in a conventional least squares based discretization strategy are highlighted. In this context, importance of discretization strategies which exploit the local structure in the grid is presented, along with a suitable point sorting strategy. Of particular interest is the proposed discretization strategies (both inviscid and viscous) within the structured grid block; a rotated update for the inviscid part and a Green-Gauss procedure based positive update for the viscous part. Both these procedures conveniently avoid the ill-conditioning associated with a conventional least squares procedure in the critical region of structured grid block. The robustness and accuracy of such a strategy is demonstrated on a number of standard test cases including a case of a multi-element airfoil. The computational efficiency of the proposed meshless solver is also demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.