941 resultados para optimal systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach to design a nonlinear observer-based excitation controller for multimachine power systems to enhance the transient stability. The controller is designed based on the partial feedback linearization of a nonlinear power system model which transforms the model into a reducedorder linear one with an autonomous dynamical part. Then a linear state feedback stabilizing controller is designed for the reduced-order linear power system model using optimal control theory which enhances the stability of the entire system. The states of the feedback stabilizing controller are obtained from the nonlinear observer and the performance of this observer-based controller is independent of the operating points of power systems. The performance of the proposed observer-based controller is compared to that of an exact feedback linearizing observer-based controller and a partial feedback linearizing controller without observer under different operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Market-oriented reverse auction is an efficient and cost-effective method for resource allocation in cloud workflow systems since it can dynamically allocate resources depending on the supply-demand relationship of the cloud market. However, during the auction the price of cloud resource is usually fixed, and the current resource allocation mechanisms cannot adapt to the changeable market properly which results in the low efficiency of resource utilization. To address such a problem, a dynamic pricing reverse auction-based resource allocation mechanism is proposed. During the auction, resource providers can change prices according to the trading situation so that our novel mechanism can increase the chances of making a deal and improve efficiency of resource utilization. In addition, resource providers can improve their competitiveness in the market by lowering prices, and thus users can obtain cheaper resources in shorter time which would decrease monetary cost and completion time for workflow execution. Experiments with different situations and problem sizes are conducted for dynamic pricing-based allocation mechanism (DPAM) on resource utilization and the measurement of Time∗Cost (TC). The results show that our DPAM can outperform its representative in resource utilization, monetary cost, and completion time and also obtain the optimal price reduction rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In current data centers, an application (e.g., MapReduce, Dryad, search platform, etc.) usually generates a group of parallel flows to complete a job. These flows compose a coflow and only completing them all is meaningful to the application. Accordingly, minimizing the average Coflow Completion Time (CCT) becomes a critical objective of flow scheduling. However, achieving this goal in today's Data Center Networks (DCNs) is quite challenging, not only because the schedule problem is theoretically NP-hard, but also because it is tough to perform practical flow scheduling in large-scale DCNs. In this paper, we find that minimizing the average CCT of a set of coflows is equivalent to the well-known problem of minimizing the sum of completion times in a concurrent open shop. As there are abundant existing solutions for concurrent open shop, we open up a variety of techniques for coflow scheduling. Inspired by the best known result, we derive a 2-approximation algorithm for coflow scheduling, and further develop a decentralized coflow scheduling system, D-CAS, which avoids the system problems associated with current centralized proposals while addressing the performance challenges of decentralized suggestions. Trace-driven simulations indicate that D-CAS achieves a performance close to Varys, the state-of-the-art centralized method, and outperforms Baraat, the only existing decentralized method, significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An off-grid photovoltaic power system requires an energy storage system, especially batteries, for mitigation of variability and intermittency problems, and for assured service reliability and availability. The longevity and reliability of such batteries depend on the effectiveness of the charging system. This paper presents the modelling, simulation and hardware implementation of a four-stage switch-mode charger based on the single-ended primary inductance converter. The digital signal processor based controller implements algorithms for the system's power balance control, maximum power point tracking to improve charging speed and efficiency, four-stage optimal charging, and system's protection. The protection algorithm provides over-charge, overdischarge, over-temperature and short circuit protection capabilities. The proposed system has the following advantages: ability to continuously charge the batteries even at reduced solar irradiation, higher efficiency, and use of adaptive thermally compensated set points for optimum performance. A prototype is built and experimental results are presented to validate the simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modeled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.