849 resultados para optical tweezers technique
Resumo:
Fibre overlay is a cost-effective technique to alleviate wavelength blocking in some links of a wavelength-routed optical network by increasing the number of wavelengths in those links. In this letter, we investigate the effects of overlaying fibre in an all-optical network (AON) based on GÉANT2 topology. The constraint-based routing and wavelength assignment (CB-RWA) algorithm locates where cost-efficient upgrades should be implemented. Through numerical examples, we demonstrate that the network capacity improves by 25 per cent by overlaying fibre on 10 per cent of the links, and by 12 per cent by providing hop reduction links comprising 2 per cent of the links. For the upgraded network, we also show the impact of dynamic traffic allocation on the blocking probability. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
We propose a novel technique of doubling optical pulses in both frequency and time domains based on a combination of cross-phase modulation induced by a triangular pump pulse in a nonlinear Kerr medium and subsequent propagation in a dispersive medium.
Resumo:
The letter presents a technique for Nth-order differentiation of periodic pulse train, which can simultaneously multiply the input repetition rate. This approach uses a single linearly chirped apodized fiber Bragg grating, which grating profile is designed to map the spectral response of the Nth-order differentiator, and the chirp introduces a dispersion that, besides space-to-frequency mapping, it also causes a temporal Talbot effect.
Resumo:
In this letter we present a technique for the implementation of Nth-order ultrafast temporal differentiators. This technique is based on two oppositely chirped fiber Bragg gratings in which the grating profile maps the spectral response of the Nth-order differentiator. Examples of 1st, 2nd, and 4th order differentiators are designed and numerically simulated.
Resumo:
A novel all-optical time domain regeneration technique using nonlinear pulse broadening and flattening in normal dispersion fiber and subsequent temporal slicing by an amplitude modulator (or a device performing a similar function) is proposed. Substantial suppression of the timing jitter of jitter-degraded optical signals is demonstrated using the proposed approach.
Resumo:
A simple and cost-effective technique for generating a flat, square-shaped multi-wavelength optical comb with 42.6 GHz line spacing and over 0.5 THz of total bandwidth is presented. A detailed theoretical analysis is presented, showing that using two concatenated modulators driven with voltages of 3.5 Vp are necessary to generate 11 comb lines with a flatness below 2dB. This performance is experimentally demonstrated using two cascaded Versawave 40 Gbit/s low drive voltage electro-optic polarisation modulators, where an 11 channel optical comb with a flatness of 1.9 dB and a side-mode-suppression ratio (SMSR) of 12.6 dB was obtained.
Resumo:
We propose a new all-optical signal processing technique to enhance the performance of a return-to-zero optical receiver, which is based on nonlinear temporal pulse broadening and flattening in a normal dispersion fiber and subsequent slicing of the pulse temporal waveform. The potential of the method is demonstrated by application to timing jitter-and noise-limited transmission at 40 Gbit/s. © 2005 Optical Society of America.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
By transforming the optical fiber span into an ultralong cavity laser, we experimentally demonstrate quasilossless transmission over long (up to 75 km) distances and virtually zero signal power variation over shorter (up to 20 km) spans, opening the way for the practical implementation of integrable nonlinear systems in optical fiber. As a by-product of our technique, the longest ever laser (to the best of our knowledge) has been implemented, with a cavity length of 75 km. A simple theory of the lossless fiber span, in excellent agreement with the observed results, is presented. © 2006 The American Physical Society.
Resumo:
A novel all-optical time domain regeneration technique using nonlinear pulse broadening and flattening in normal dispersion fiber and subsequent temporal slicing by an amplitude modulator (or a device performing a similar function) is proposed. Substantial suppression of the timing jitter of jitter-degraded optical signals is demonstrated using the proposed approach.
Resumo:
A flexible method for fabricating shallow optical waveguides by using femtosecond laser writing of patterns on a metal coated glass substrate followed by ion-exchange is described. This overcomes the drawbacks of low index contrast and high induced stress in waveguides directly written using low-repetition rate ultrafast laser systems. When compared to conventional lithography, the technique is simpler and has advantages in terms of flexibility in the types of structures which can be fabricated.
Resumo:
We demonstrate a novel and simple sensor interrogation scheme for fiber Bragg grating (FBG) based sensing systems. In this scheme, a chirped FBG based Sagnac loop is used as a wavelength-dependent receiver, and a stable and linear readout response is realised. It is a signijkant advantage of this scheme that the sensitivity and the measurement wavelength range can be easily adjhsted by controlling the chirp of the FBG or using an optical delay line in the Sagnac loop.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.