982 resultados para neuro-immune-modulation
Resumo:
In order to determine the best type of rabies vaccine to use as a booster, 78 serological samples from singly vaccinated cattle were analyzed by counterimmunoelectrophoresis technique. The animals were divided into several groups, received the first vaccine dose with modified live virus vaccine (ERA strain) and were revaccinated with inactivated virus or modified live virus vaccines. Boosters were given at 2, 4, 8, 12 and 16 weeks following first vaccination. Results showed high titres in the cases of booster with inactivated vaccine. In all cases, however, detectable antibody titres declined quickly.
Resumo:
Much remains to be known about the mechanisms involved in protective immunity against malaria and the way it is acquired. This is probably the reason why, in spite of so much progress, it has not yet been possible to develop an anti-malaria vaccine able to induce parasite specific antibodies (Ab) and/or T-cells. It has been considered in the early 80s that the induction of efficient protection against the blood stage forms of Plasmodium falciparum would not be possible without simultaneously eliciting an autoimmune (AI) response against erythrocytes, even at the price of inducing an AI pathology. Despite the description of the reciprocal relationship, i.e. the protective effect of malaria on the development of AI diseases - demonstrated since 1970 - no effort has been made to verify the possible involvement of the AI response in protection against malaria. With this end in view - and in the light of the knowledge acquired in autoimmunity and the existence of the so called "natural" (not associated with pathology) autoantibodies - we propose to examine the hypothesis that the participation of the AI response (not necessarily restricted to autologous erythrocyte antigens) in the immune protection against malaria is possible or even necessary.
Resumo:
Hepatic Schistosoma mansoni periovular granulomas undergo changes in size, cellular composition and appearance with time. This phenomenom, known as "immunological modulation", has been thought to reflect host immunological status. However, as modulation has not been observed outside the liver, participation of local factors, hitherto little considered, seems crucial. Components of the extracellular matrix of periovular granulomas of the mouse were particularly studied in three different organs (liver, lung and intestine) and during three periods of infection time (acute, intermediate and chronic) by means of histological, biochemical and imunofluorescence techniques, while quantitative data were evaluated by computerized morphometry, in order to investigate participation of local factors in granuloma modulation. Results confirmed modulation as a exclusively hepatic phenomenom, since pulmonary and intestinal granulomas, formed around mature eggs, did not change size and appearance with time. The matricial components which were investigated (Type I, III and IV collagens, fibronectin, laminin, proteoglycans and elastin) were found in all granulomas and in all organs examined. However, their presence was much more prominent in the liver. Elastin was only found in hepatic granulomas of chronic infection. The large amount of extracellular matrix components found in hepatic granulomas was the main change responsible for the morphological aspects of modulation. Therefore, the peculiar environment of the liver ultimately determines the changes identified in schistosomal granuloma as "modulation".
Resumo:
Flow cytometric analysis is a useful and widely employed tool to identify immunological alterations caused by different microorganisms, including Mycobacterium tuberculosis. However, this tool can be used for several others analysis. We will discuss some applications for flow cytometry to the study of M. tuberculosis, mainly on cell surface antigens, mycobacterial secreted proteins, their interaction with the immune system using inflammatory cells recovered from peripheral blood, alveolar and pleura spaces and the influence of M. tuberculosis on apoptosis, and finally the rapid determination of drug susceptibility. All of these examples highlight the usefulness of flow cytometry in the study of M. tuber-culosis infection.
Resumo:
Dietary fatty acid supply can affect stress response in fish during early development. Although knowledge on the mechanisms involved in fatty acid regulation of stress tolerance is scarce, it has often been hypothesised that eicosanoid profiles can influence cortisol production. Genomic cortisol actions are mediated by cytosolic receptors which may respond to cellular fatty acid signalling. An experiment was designed to test the effects of feeding gilthead sea-bream larvae with four microdiets, containing graded arachidonic acid (ARA) levels (0·4, 0·8, 1·5 and 3·0 %), on the expression of genes involved in stress response (steroidogenic acute regulatory protein, glucocorticoid receptor and phosphoenolpyruvate carboxykinase), lipid and, particularly, eicosanoid metabolism (hormone-sensitive lipase, PPARα, phospholipase A2, cyclo-oxygenase-2 and 5-lipoxygenase), as determined by real-time quantitative PCR. Fish fatty acid phenotypes reflected dietary fatty acid profiles. Growth performance, survival after acute stress and similar whole-body basal cortisol levels suggested that sea-bream larvae could tolerate a wide range of dietary ARA levels. Transcription of all genes analysed was significantly reduced at dietary ARA levels above 0·4 %. Nonetheless, despite practical suppression of phospholipase A2 transcription, higher leukotriene B4 levels were detected in larvae fed 3·0 % ARA, whereas a similar trend was observed regarding PGE2 production. The present study demonstrates that adaptation to a wide range of dietary ARA levels in gilthead sea-bream larvae involves the modulation of the expression of genes related to eicosanoid synthesis, lipid metabolism and stress response. The roles of ARA, other polyunsaturates and eicosanoids as signals in this process are discussed.
Resumo:
Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.
Resumo:
Primary brain tumours are heterogeneous in histology, genetics, and outcome. Although WHO's classification of tumours of the CNS has greatly helped to standardise diagnostic criteria worldwide, it does not consider the substantial progress that has been made in the molecular classification of many brain tumours. Recent practice-changing clinical trials have defined a role for routine assessment of MGMT promoter methylation in glioblastomas in elderly people, and 1p and 19q codeletions in anaplastic oligodendroglial tumours. Moreover, large-scale molecular profiling approaches have identified new mutations in gliomas, affecting IDH1, IDH2, H3F3, ATRX, and CIC, which has allowed subclassification of gliomas into distinct molecular subgroups with characteristic features of age, localisation, and outcome. However, these molecular approaches cannot yet predict patients' benefit from therapeutic interventions. Similarly, transcriptome-based classification of medulloblastoma has delineated four variants that might now be candidate diseases in which to explore novel targeted agents.
Resumo:
SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.
Resumo:
In this work, a murine experimental model of toxocariasis has been developed in BALB/c, C57BL/10 and C3H murine strains orally inoculated with 4,000 Toxocara canis embryonated eggs, in order to investigate the isotype-specific immune responses against excretory-secretory antigens from larvae. T. canis specific IgG+M, IgM, IgG, IgA, IgG1, IgG2a and IgG3 were tested by ELISA. The dynamics of the specific immunoglobulins (IgG+IgM) production showed a contrasting profile regarding the murine strain. Conversely to the results obtained with the IgM isotype, the IgG antibody class showed similar patterns to those obtained with IgG+IgM antibodies, only in the case of the BALB/c strain, being different and much higher than the obtained with IgG+IgM antibodies, when the C3H murine strain was used. The antibodies IgG+IgM tested in BALB/c and C57BL/10 were both of the IgM and IgG isotypes. Conversely, in the C3H strain only IgG specific antibody levels were detected. The IgG1 subclass responses showed a similar profile in the three murine strains studied, with high values in BALB/c, as in the case of the IgG responses.
Resumo:
BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.
Resumo:
Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms
Resumo:
INTRODUCTION. Both hypocapnia and hypercapnia can be deleterious to brain injured patients. Strict PaCO2 control is difficult to achieve because of patient's instability and unpredictable effects of ventilator settings changes. OBJECTIVE. The aim of this study was to evaluate our ability to comply with a protocol of controlled mechanical ventilation (CMV) aiming at a PaCO2 between 35 and 40 mmHg in patients requiring neuro-resuscitation. METHODS. Retrospective analysis of consecutive patients (2005-2011) requiring intracranial pressure (ICP) monitoring for traumatic brain injury (TBI), subarachnoid haemorrhage (SAH), intracranial haemorrhage (ICH) or ischemic stroke (IS). Demographic data, GCS, SAPS II, hospital mortality, PaCO2 and ICP values were recorded. During CMV in the first 48 h after admission, we analyzed the time spent within the PaCO2 target in relation to the presence or absence of intracranial hypertension (ICP[20 mmHg, by periods of 30 min) (Table 1). We also compared the fraction of time (determined by linear interpolation) spent with normal, low or high PaCO2 in hospital survivors and non-survivors (Wilcoxon, Bonferroni correction, p\0.05) (Table 2). PaCO2 samples collected during and after apnoea tests were excluded. Results given as median [IQR]. RESULTS. 436 patients were included (TBI: 51.2 %, SAH: 20.6 %, ICH: 23.2 %, IS: 5.0 %), age: 54 [39-64], SAPS II score: 52 [41-62], GCS: 5 [3-8]. 8744 PaCO2 samples were collected during 150611 h of CMV. CONCLUSIONS. Despite a high number of PaCO2 samples collected (in average one sample every 107 min), our results show that patients undergoing CMV for neuro- resuscitation spent less than half of the time within the pre-defined PaCO2 range. During documented intracranial hypertension, hypercapnia was observed in 17.4 % of the time. Since non-survivors spent more time with hypocapnia, further analysis is required to determine whether hypocapnia was detrimental per se, or merely reflects increased severity of brain insult.
Resumo:
Common variable immune deficiency is the most frequent primary immune deficiency, characterized mainly by a disorder of B lymphocytes differentiation and a deficit in immunoglobulins. The clinical manifestations include recurrent infections, non-infectious lung and digestive involvements, autoimmune diseases, and an increased susceptibility to cancers. Recent breakthroughs have been made in the understanding of some genetic mechanisms of the disease. Replacement therapy with intravenous immunoglobulins remains the treatment of choice, which allows significant improvement in the survival and quality of life. However progress should be made in the understanding of the pathophysiology and in the early detection of this disease, since a delay in the diagnosis may have harmful consequences in terms of morbidity and mortality.
Resumo:
Directional selection for parasite resistance is often intense in highly social host species. Using a partial cross-fostering experiment we studied environmental and genetic variation in immune response and morphology in a highly colonial bird species, the house martin (Delichon urbica). We manipulated intensity of infestation of house martin nests by the haematophagous parasitic house martin bug Oeciacus hirundinis either by spraying nests with a weak pesticide or by inoculating them with 50 bugs. Parasitism significantly affected tarsus length, T cell response, immunoglobulin and leucocyte concentrations. We found evidence of strong environmental effects on nestling body mass, body condition, wing length and tarsus length, and evidence of significant additive genetic variance for wing length and haematocrit. We found significant environmental variance, but no significant additive genetic variance in immune response parameters such as T cell response to the antigenic phytohemagglutinin, immunoglobulins, and relative and absolute numbers of leucocytes. Environmental variances were generally greater than additive genetic variances, and the low heritabilities of phenotypic traits were mainly a consequence of large environmental variances and small additive genetic variances. Hence, highly social bird species such as the house martin, which are subject to intense selection by parasites, have a limited scope for immediate microevolutionary response to selection because of low heritabilities, but also a limited scope for long-term response to selection because evolvability as indicated by small additive genetic coefficients of variation is weak.