946 resultados para muscle injuries
Resumo:
Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.
Resumo:
Background: Neonatal brain injuries are the main cause of visual deficit produced by damage to posterior visual pathways.While there are several studies of visual function in low-risk preterm infants or older children with brain injuries, research in children of early age is lacking. Aim: To assess several aspects of visual function in preterm infants with brain injuries and to compare them with another group of low-risk preterm infants of the same age. Study design and subjects: Forty-eight preterm infants with brain injuries and 56 low-risk preterm infants. Outcome measures: The ML Leonhardt Battery of Optotypes was used to assess visual functions. This test was previously validated at a post-menstrual age of 40 weeks in newborns and at 30-plus weeks in preterm infants. Results: The group of preterminfants with brain lesions showed a delayed pattern of visual functions in alertness, fixation, visual attention and tracking behavior compared to infants in the healthy preterm group. The differences between both groups, in the visual behaviors analyzed were around 30%. These visual functions could be identified from the first weeks of life. Conclusion: Our results confirm the importance of using a straightforward screening test with preterminfants in order to assess altered visual function, especially in infants with brain injuries. The findings also highlight the need to provide visual stimulation very early on in life.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
The World Health Organization (WHO) plans to submit the 11th revision of the International Classification of Diseases (ICD) to the World Health Assembly in 2018. The WHO is working toward a revised classification system that has an enhanced ability to capture health concepts in a manner that reflects current scientific evidence and that is compatible with contemporary information systems. In this paper, we present recommendations made to the WHO by the ICD revision's Quality and Safety Topic Advisory Group (Q&S TAG) for a new conceptual approach to capturing healthcare-related harms and injuries in ICD-coded data. The Q&S TAG has grouped causes of healthcare-related harm and injuries into four categories that relate to the source of the event: (a) medications and substances, (b) procedures, (c) devices and (d) other aspects of care. Under the proposed multiple coding approach, one of these sources of harm must be coded as part of a cluster of three codes to depict, respectively, a healthcare activity as a 'source' of harm, a 'mode or mechanism' of harm and a consequence of the event summarized by these codes (i.e. injury or harm). Use of this framework depends on the implementation of a new and potentially powerful code-clustering mechanism in ICD-11. This new framework for coding healthcare-related harm has great potential to improve the clinical detail of adverse event descriptions, and the overall quality of coded health data.
Resumo:
PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.
Resumo:
Football is a universal and an affordable game but we need to minimize the incidence of accidents among the increasing number of young football players. Our 11 year retrospective epidemiological study (1990-2000) of football injuries in children (N= 1000) was compared with those of adult players in the 2006 European Championship. This comparative study confirmed that the anatomical, biomechanical and biological conditions differ between adults and children and that they warrant particular attention to protect the latter vulnerable group against bone avulsions, overuse pathologies and fatigue-fractures. Injuries were shown to increase significantly with age up to 16 years (P=0.005). Children suffer mainly from contusions, fractures and sprain injuries. Head injuries were more common in boys (P=0.070), while girls were more prone to sprains. The types of injuries differ between adults and children (sprain versus fractures), the anatomical location of injuries is different (lower limbs in adults, lower and upper limbs in children), the circumstances of the injuries are different (contact in adults versus non-contact in children), and teenage girls have different types of injuries than teenage boys. An increased incidence of injuries is due to changes in the position of the center of gravity and in the morphotype during rapid growth. For these reasons it is mandatory to adapt the training to the age and sex of the players. It is unsafe to train children the same way as adults. The height, the weight and the speed of growth must be taken into account by the multidisciplinary team when organising the training programmes. -- Le football fait partie des sports les plus pratiqués au monde en raison de sa popularité et de son accessibilité économ ique. L'incidence des blessures liées à cette pratique doit être diminuée surtout chez les jeunes joueurs en raison de la croissance exponentielle du nombre de joueurs féminins et masculins. Une étude épidémiologique rétrospective sur 11 ans (1990-2000) a été réalisée chez les enfants victimes de blessures liées au football (N==1000), puis a été comparée aux données recueillies de l'UEFA lors d'un Championnat Européen en 2006 sur les lésions des joueurs adultes. Cette étude comparative confirme que les structures anatomiques, biologiques et les tensions biomécaniques chez l'enfant diffèrent de celles de l'adulte. Les enfants ont un risque plus élevé de souffrir d'avulsion osseuse et de fractures de fatigue que les adultes. Les blessures augmentent significativement avec l'âge jusqu'à 16 ans (P==0,005). Les traumatismes crâniens sont plus fréquents chez les garçons tandis que les entorses sont plus à risque chez les filles. Les adultes font plus souvent des entorses tandis que les enfants font plus de fractures. La localisation anatomique diffère également entre ces deux groupes (les membres inférieurs chez l'adulte et les membres inférieurs et supérieurs chez l'enfant). La circonstance des blessures diffère également (choc avec un autre joueur chez l'adulte et des blessures sans contact chez l'enfant). Chez les adolescents, les blessures des filles diffèrent de celles des garçons. L'augmentation chez les enfants de cette incidence est liée au déplacement lors de la croissance du centre de gravité, avec une maladresse accrue lors des phases de croissance. Pour toutes ces raisons, il est justifié d'adapter les entraînements de football en fonction de l'âge, du sexe et du morphotype. L'entrainement des enfants doit être différent de celui des adultes. Le poids, la taille et la vitesse de croissance doit être prise en compte dans des structures multidisciplinaires afin de permettre une meilleure longévité sportive des jeunes joueurs de football.
Resumo:
AIMS: Mitofusin-2 (Mfn2) expression is dysregulated in vascular proliferative disorders and its overexpression attenuates the proliferation of vascular smooth muscle cells (VSMCs) and neointimal lesion development after balloon angioplasty. We sought to gain insight into the mechanisms that control Mfn2 expression in VSMCs. METHODS AND RESULTS: We cloned and characterized 2 kb of the 5'-flanking region of the human Mfn2 gene. Its TATA-less promoter contains a CpG island. In keeping with this, 5'-rapid amplification of cDNA ends revealed six transcriptional start sites (TSSs), of which TSS2 and TSS5 were the most frequently used. The strong CpG island was found to be non-methylated under conditions characterized by large differences in Mfn2 gene expression. The proximal Mfn2 promoter contains six putative Sp1 motifs. Sp1 binds to the Mfn2 promoter and its overexpression activates the Mfn2 promoter in VSMCs. Chemical inhibition of Sp1 reduced Mfn2 expression, and Sp1 silencing reduced transcriptional activity of the Mfn2 promoter. In keeping with this view, Sp1 and Mfn2 mRNA levels were down-regulated in the aorta early after an atherogenic diet in apolipoprotein E-knockout mice or in VSMCs cultured in the presence of low serum. CONCLUSION: Sp1 is a key factor in maintaining basal Mfn2 transcription in VSMCs. Given the anti-proliferative actions of Mfn2, Sp1-induced Mfn2 transcription may represent a mechanism for prevention of VSMC proliferation and neointimal lesion and development.
Resumo:
AIMS: Mitofusin-2 (Mfn2) expression is dysregulated in vascular proliferative disorders and its overexpression attenuates the proliferation of vascular smooth muscle cells (VSMCs) and neointimal lesion development after balloon angioplasty. We sought to gain insight into the mechanisms that control Mfn2 expression in VSMCs. METHODS AND RESULTS: We cloned and characterized 2 kb of the 5'-flanking region of the human Mfn2 gene. Its TATA-less promoter contains a CpG island. In keeping with this, 5'-rapid amplification of cDNA ends revealed six transcriptional start sites (TSSs), of which TSS2 and TSS5 were the most frequently used. The strong CpG island was found to be non-methylated under conditions characterized by large differences in Mfn2 gene expression. The proximal Mfn2 promoter contains six putative Sp1 motifs. Sp1 binds to the Mfn2 promoter and its overexpression activates the Mfn2 promoter in VSMCs. Chemical inhibition of Sp1 reduced Mfn2 expression, and Sp1 silencing reduced transcriptional activity of the Mfn2 promoter. In keeping with this view, Sp1 and Mfn2 mRNA levels were down-regulated in the aorta early after an atherogenic diet in apolipoprotein E-knockout mice or in VSMCs cultured in the presence of low serum. CONCLUSION: Sp1 is a key factor in maintaining basal Mfn2 transcription in VSMCs. Given the anti-proliferative actions of Mfn2, Sp1-induced Mfn2 transcription may represent a mechanism for prevention of VSMC proliferation and neointimal lesion and development.
Resumo:
BACKGROUND: Fatigue is likely to be an important limiting factor in adolescents with spastic cerebral palsy (CP). AIMS: To determine the effects of walking-induced fatigue on postural control adjustments in adolescents with unilateral CP and their typically developing (TD) peers. METHODS: Ten adolescents with CP (14.2±1.7yr) and 10 age-, weight- and height-matched TD adolescents (14.1±1.9yr) walked for 15min on a treadmill at their preferred walking speed. Before and after this task, voluntary strength capacity of knee extensors (MVC) and postural control were evaluated in 3 conditions: eyes open (EO), eyes closed (EC) and with dual cognitive task (EODT). RESULTS: After walking, MVC decreased significantly in CP (-11%, P<0.05) but not in TD. The CoP area was only significantly increased in CP (90%, 34% and 60% for EO, EC and EODT conditions, respectively). The CoP length was significantly increased in the EO condition in CP and TD (20% and 21%) and was significantly increased in the EODT condition by 18% in CP only. CONCLUSIONS: Unlike TD adolescents, treadmill walking for 15min at their preferred speed lead to significant knee extensor strength losses and impairments in postural control in adolescents with unilateral spastic CP.
Resumo:
This work presents a comparison between three analytical methods developed for the simultaneous determination of eight quinolones regulated by the European Union (marbofloxacin, ciprofloxacin, danofloxacin, enrofloxacin, difloxacin, sarafloxacin, oxolinic acid and flumequine) in pig muscle, using liquid chromatography with fluorescence detection (LC-FD), liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The procedures involve an extraction of the quinolones from the tissues, a step for clean-up and preconcentration of the analytes by solid-phase extraction and a subsequent liquid chromatographic analysis. The limits of detection of the methods ranged from 0.1 to 2.1 ng g−1 using LC-FD, from 0.3 to 1.8 using LC-MS and from 0.2 to 0.3 using LC-MS/MS, while inter- and intra-day variability was under 15 % in all cases. Most of those data are notably lower than the maximum residue limits established by the European Union for quinolones in pig tissues. The methods have been applied for the determination of quinolones in six different commercial pig muscle samples purchased in different supermarkets located in the city of Granada (south-east Spain).
Resumo:
Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.
Resumo:
Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.
Resumo:
Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish.
Resumo:
Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.