929 resultados para motor unit potential
Resumo:
A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fastmoving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment due to the use of non-deterministic readily-available hardware (such as 802.11-based wireless) and inaccurate clock synchronisation protocols (such as Network Time Protocol (NTP)). As a result, the synchronisation of the clocks between robots can be out by tens-to-hundreds of milliseconds making correlation of data difficult and preventing the possibility of the units performing synchronised actions such as triggering cameras or intricate swarm manoeuvres. In this thesis, a complete data fusion unit is designed, implemented and tested. The unit, named BabelFuse, is able to accept sensor data from a number of low-speed communication buses (such as RS232, RS485 and CAN Bus) and also timestamp events that occur on General Purpose Input/Output (GPIO) pins referencing a submillisecondaccurate wirelessly-distributed "global" clock signal. In addition to its timestamping capabilities, it can also be used to trigger an attached camera at a predefined start time and frame rate. This functionality enables the creation of a wirelessly-synchronised distributed image acquisition system over a large geographic area; a real world application for this functionality is the creation of a platform to facilitate wirelessly-distributed 3D stereoscopic vision. A ‘best-practice’ design methodology is adopted within the project to ensure the final system operates according to its requirements. Initially, requirements are generated from which a high-level architecture is distilled. This architecture is then converted into a hardware specification and low-level design, which is then manufactured. The manufactured hardware is then verified to ensure it operates as designed and firmware and Linux Operating System (OS) drivers are written to provide the features and connectivity required of the system. Finally, integration testing is performed to ensure the unit functions as per its requirements. The BabelFuse System comprises of a single Grand Master unit which is responsible for maintaining the absolute value of the "global" clock. Slave nodes then determine their local clock o.set from that of the Grand Master via synchronisation events which occur multiple times per-second. The mechanism used for synchronising the clocks between the boards wirelessly makes use of specific hardware and a firmware protocol based on elements of the IEEE-1588 Precision Time Protocol (PTP). With the key requirement of the system being submillisecond-accurate clock synchronisation (as a basis for timestamping and camera triggering), automated testing is carried out to monitor the o.sets between each Slave and the Grand Master over time. A common strobe pulse is also sent to each unit for timestamping; the correlation between the timestamps of the di.erent units is used to validate the clock o.set results. Analysis of the automated test results show that the BabelFuse units are almost threemagnitudes more accurate than their requirement; clocks of the Slave and Grand Master units do not di.er by more than three microseconds over a running time of six hours and the mean clock o.set of Slaves to the Grand Master is less-than one microsecond. The common strobe pulse used to verify the clock o.set data yields a positive result with a maximum variation between units of less-than two microseconds and a mean value of less-than one microsecond. The camera triggering functionality is verified by connecting the trigger pulse output of each board to a four-channel digital oscilloscope and setting each unit to output a 100Hz periodic pulse with a common start time. The resulting waveform shows a maximum variation between the rising-edges of the pulses of approximately 39¥ìs, well below its target of 1ms.
Resumo:
The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34+ hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.
Resumo:
The publication of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association, 1994) introduced the notion that a life-threatening illness can be a stressor and catalyst for Posttraumatic Stress Disorder (PTSD). Since then a solid body of research has been established investigating the post-diagnosis experience of cancer. These studies have identified a number of short and long-term life changes resulting from a diagnosis of cancer and associated treatments. In this chapter, we discuss the psychosocial response to the cancer experience and the potential for cancer-related distress. Cancer can represent a life-threatening diagnosis that may be associated with aggressive treatments and result in physical and psychological changes. The potential for future trauma through the lasting effects of the disease and treatment, and the possibility of recurrence, can be a source of continued psychological distress. In addition to the documented adverse repercussions of cancer, we also outline the recent shift that has occurred in the psycho-oncology literature regarding positive life change or posttraumatic growth that is commonly reported after a diagnosis of cancer. Adopting a salutogenic framework acknowledges that the cancer experience is a dynamic psychosocial process with both negative and positive repercussions. Next, we describe the situational and individual factors that are associated with posttraumatic growth and the types of positive life change that are prevalent in this context. Finally, we discuss the implications of this research in a therapeutic context and the directions of future posttraumatic growth research with cancer survivors. This chapter will present both quantitative and qualitative research that indicates the potential for personal growth from adversity rather than just mere survival and return to pre-diagnosis functioning. It is important to emphasise however, that the presence of growth and prevalence of resilience does not negate the extremely distressing nature of a cancer diagnosis for the patient and their families and the suffering that can accompany treatment regimes. Indeed, it will be explained that for growth to occur, the experience must be one that quite literally shatters previously held schemas in order to act as a catalyst for change.
Resumo:
Objective(s): A new model of care for the management of patients with delirium was developed and evaluated. Method: A 4-bedded Close Observation Unit (COU) was introduced. The model comprised an education strategy for assistants in nursing (AIN), environmental adaptations and AIN to patient ratio of 1:4. Outcomes in all patients with delirium before and after introduction of the new model of care were compared. Results: 105 patients were admitted to COU, of whom 100 (95%) were diagnosed with delirium. In-hospital mortality improved after introduction of the unit (15% versus 5%; p=0.002) without significant change in length of stay, discharge destination or falls frequency. Conclusion: A dedicated unit for delirium management within medicine achieved a reduction in mortality.
Resumo:
Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1 which is the focus of this report), and by evaluating the Q-Ride CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2), which is the focus of this report. Deliverable 3 of the program identified potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders. While fatality and injury rates for learner car drivers are typically lower than for those with intermediate licences, this pattern is not found for learner motorcycle riders. Learner riders cannot be supervised as effectively as learner car drivers and errors are more likely to result in injury for learner riders than learner drivers. It is therefore imperative to improve safety for learner riders. Deliverable 1 examines the potential for improving the motorcycle learner and licence scheme by introducing a pre-learner motorcycle licensing and training scheme within Queensland. The tasks undertaken for Deliverable 1 were a literature review, analysis of learner motorcyclist crash and licensing data, and the development of a potential pre-learner motorcycle rider program.
Resumo:
Motorcycle trauma is a serious issue in Queensland and throughout Australia; the fatality rate per 100 million kilometres travelled for motorcycle riders in Australia is nearly 30 times the rate for drivers of other vehicles (Australian Transport Safety Bureau, 2002). In 2009, the then Queensland Transport (later the Department of Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the Q-Ride CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2), and identifying potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders (Deliverable 3).
Resumo:
Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the Q-Ride CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2), which is the focus of this report. Deliverable 3 of the program identified potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders. This report provides a summary of Deliverables 2.1 through to 2.4.
Resumo:
Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the QRide CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2). The focus of this report is Deliverable 3 of the overall program of research. It identifies potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders.
Resumo:
BACKGROUND Collaborative and active learning have been clearly identified as ways students can engage in learning with each other and the academic staff. Traditional tier based lecture theatres and the didactic style they engender are not popular with students today as evidenced by the low attendance rates for lectures. Many universities are installing spaces designed with tables for group interaction with evolutions on spaces such as the TEAL (Technology Enabled Active Learning) (Massachusetts Institute of Technology, n.d.) and SCALE-UP (Student-Centred Activities for Large-Enrolment Undergraduate Programs) (North Carolina State University, n.d.) models. Technology advances in large screen computers and applications have also aided the move to these collaborative spaces. How well have universities structured learning using these spaces and how have students engaged with the content, technology, space and each other? This paper investigates the application of collaborative learning in such spaces for a cohort of 800+ first year engineers in the context of learning about and developing professional skills representative of engineering practice. PURPOSE To determine whether moving from tiers to tables enhances the student experience. Does utilising technology rich, activity based, collaborative learning spaces lead to positive experiences and active engagement of first year undergraduate engineering students? In developing learning methodology and approach in new learning spaces, what needs to change from a more traditional lecture and tutorial configuration? DESIGN/METHOD A post delivery review and analysis of outcomes was undertaken to determine how well students and tutors engaged with learning in new collaborative learning spaces. Data was gathered via focus group and survey of tutors, students survey and attendance observations. The authors considered the unit delivery approach along with observed and surveyed outcomes then conducted further review to produce the reported results. RESULTS Results indicate high participation in the collaborative sessions while the accompanying lectures were poorly attended. Students reported a high degree of satisfaction with the learning experience; however more investigation is required to determine the degree of improvement in retained learning outcomes. Survey feedback from tutors found that students engaged well in the activities during tutorials and there was an observed improvement in the quality of professional practice modelled by students during sessions. Student feedback confirmed the positive experiences in these collaborative learning spaces with 30% improvement in satisfaction ratings from previous years. CONCLUSIONS It is concluded that the right mix of space, technology and appropriate activities does engage students, improve participation and create a rich experience to facilitate potential for improved learning outcomes. The new Collaborative Teaching Spaces, together with integrated technology and tailored activities, has transformed the delivery of this unit and improved student satisfaction in tutorials significantly.
Resumo:
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
Resumo:
The Australian sugar industry processes approximately 35 million tonnes of sugarcane per year from 400 000 hectares of land. Sugar remains the principal revenue stream from sugarcane in Australia with less than 60 ML/y of fuel ethanol produced from final molasses at present. Modelling has been undertaken to estimate the potential ethanol production from the Australian sugar industry for integrated facilities producing both sugar and ethanol from the entire sugarcane resource. Although research aimed at developing commercial processes is ongoing, the use of a proportion of the bagasse and trash for ethanol production, in addition to juice and molasses fermentation, would allow significant increases in the scale of ethanol production from sugarcane in Australia, increasing total industry revenues while maintaining energy self sufficiency.