923 resultados para model selection in binary regression
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that it is possible to implement soft superweak CP violation in the context of a 3-3-1 model with only three triplets. All CP violation effects come from the exchange of singly and doubly charged scalars. We consider the implication of this mechanism in the quark and lepton sectors. In particular it is shown that, in this model, as in most of those which incorporate scalar mediated CP violation, it is possible to have large electric dipole moments for the muon and the tau lepton while keeping small those of the electron and neutron. The CKM mixing matrix is real at the tree level but gets a phase at the 1-up loop level. ©1999 The American Physical Society.
Resumo:
We show that it is possible to implement soft superweak CP violation in the context of a 3-3-1 model with only three triplets. All CP violation effects come from the exchange of singly and doubly charged scalars. We consider the implication of this mechanism in the quark and lepton sectors. In particular it is shown that, in this model, as in most of those which incorporate scalar mediated CP violation, it is possible to have large electric dioole moments for the muon and the tau lepton while keeping small those of the electron and neutron. The CKM mixing matrix is real at the tree level but gets a phase at the 1-up loop level. ©1999 The American Physical Society.
Resumo:
The present paper deals with estimation of variance components, prediction of breeding values and selection in a population of rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell.-Arg.] from Rio Branco, State of Acre, Brazil. The REML/BLUP (restricted maximum likelihood/best linear unbiased prediction) procedure was applied. For this purpose, 37 rubber tree families were obtained and assessed in a randomized complete block design, with three unbalanced replications. The field trial was carried out at the Experimental Station of UNESP, located in Selvíria, State of Mato Grosso do Sul, Brazil. The quantitative traits evaluated were: girth (G), bark thickness (BT), number of latex vessel rings (NR), and plant height (PH). Given the unbalanced condition of the progeny test, the REML/BLUP procedure was used for estimation. The narrow-sense individual heritability estimates were 0.43 for G, 0.18 for BT, 0.01 for NR, and 0.51 for PH. Two selection strategies were adopted: one short-term (ST - selection intensity of 8.85%) and the other long-term (LT - selection intensity of 26.56%). For G, the estimated genetic gains in relation to the population average were 26.80% and 17.94%, respectively, according to the ST and LT strategies. The effective population sizes were 22.35 and 46.03, respectively. The LT and ST strategies maintained 45.80% and 28.24%, respectively, of the original genetic diversity represented in the progeny test. So, it can be inferred that this population has potential for both breeding and ex situ genetic conservation as a supplier of genetic material for advanced rubber tree breeding programs. Copyright by the Brazilian Society of Genetics.
Resumo:
A variety of effects is attributed to the photo stimulation of tissues, such as improved healing of ulcers, analgesic and anti-inflammatory effects, stimulation of the proliferation of cells of different origins and stimulation of bone repair. Some investigations that make qualitative evaluations, like wound healing and evaluation of pain and edema, can be conducted in human subjects. However, deeper investigations on the mechanisms of action of the light stimulus and other quantitative works that requires biopsies or destructive analysis has to be carried out in animal models or in cell cultures. In this work, we propose the use of planarians as a model to study laser-tissue interaction. Contrasting with cell cultures and unicellular organisms, planarians are among the simplest organism having tissue layers, central nerve system, digestive and excretory system that might have been platforms for the evolution of the complex and highly organized tissues and organs found in higher organisms. For the present study, 685 nm laser radiation was employed. Planarians were cut transversally, in a plane posterior to the auricles. The body fragments were left to regenerate and the proliferation dynamics of stem cells was studied by using histological analysis. Maximum cell count was obtained for the laser treated group at the 4th experimental day. At that experimental time, we also had the largest difference between the irradiated and the non-irradiated control group. We concluded that the studied flatworm could be an interesting animal model for in vivo studies of laser-tissue interactions.
Resumo:
Due to the wide diversity of unknown organisms in the environment, 99% of them cannot be grown in traditional culture medium in laboratories. Therefore, metagenomics projects are proposed to study microbial communities present in the environment, from molecular techniques, especially the sequencing. Thereby, for the coming years it is expected an accumulation of sequences produced by these projects. Thus, the sequences produced by genomics and metagenomics projects present several challenges for the treatment, storing and analysis such as: the search for clones containing genes of interest. This work presents the OCI Metagenomics, which allows defines and manages dynamically the rules of clone selection in metagenomic libraries, thought an algebraic approach based on process algebra. Furthermore, a web interface was developed to allow researchers to easily create and execute their own rules to select clones in genomic sequence database. This software has been tested in metagenomic cosmid library and it was able to select clones containing genes of interest. Copyright 2010 ACM.
Resumo:
Background: The sequencing and publication of the cattle genome and the identification of single nucleotide polymorphism (SNP) molecular markers have provided new tools for animal genetic evaluation and genomic-enhanced selection. These new tools aim to increase the accuracy and scope of selection while decreasing generation interval. The objective of this study was to evaluate the enhancement of accuracy caused by the use of genomic information (Clarifide® - Pfizer) on genetic evaluation of Brazilian Nellore cattle. Review: The application of genome-wide association studies (GWAS) is recognized as one of the most practical approaches to modern genetic improvement. Genomic selection is perhaps most suited to the improvement of traits with low heritability in zebu cattle. The primary interest in livestock genomics has been to estimate the effects of all the markers on the chip, conduct cross-validation to determine accuracy, and apply the resulting information in GWAS either alone [9] or in combination with bull test and pedigree-based genetic evaluation data. The cost of SNP50K genotyping however limits the commercial application of GWAS based on all the SNPs on the chip. However, reasonable predictability and accuracy can be achieved in GWAS by using an assay that contains an optimally selected predictive subset of markers, as opposed to all the SNPs on the chip. The best way to integrate genomic information into genetic improvement programs is to have it included in traditional genetic evaluations. This approach combines traditional expected progeny differences based on phenotype and pedigree with the genomic breeding values based on the markers. Including the different sources of information into a multiple trait genetic evaluation model, for within breed dairy cattle selection, is working with excellent results. However, given the wide genetic diversity of zebu breeds, the high-density panel used for genomic selection in dairy cattle (Ilumina Bovine SNP50 array) appears insufficient for across-breed genomic predictions and selection in beef cattle. Today there is only one breed-specific targeted SNP panel and genomic predictions developed using animals across the entire population of the Nellore breed (www.pfizersaudeanimal.com), which enables genomically - enhanced selection. Genomic profiles are a way to enhance our current selection tools to achieve more accurate predictions for younger animals. Material and Methods: We analyzed the age at first calving (AFC), accumulated productivity (ACP), stayability (STAY) and heifer pregnancy at 30 months (HP30) in Nellore cattle fitting two different animal models; 1) a traditional single trait model, and 2) a two-trait model where the genomic breeding value or molecular value prediction (MVP) was included as a correlated trait. All mixed model analyses were performed using the statistical software ASREML 3.0. Results: Genetic correlation estimates between AFC, ACP, STAY, HP30 and respective MVPs ranged from 0.29 to 0.46. Results also showed an increase of 56%, 36%, 62% and 19% in estimated accuracy of AFC, ACP, STAY and HP30 when MVP information was included in the animal model. Conclusion: Depending upon the trait, integration of MVP information into genetic evaluation resulted in increased accuracy of 19% to 62% as compared to accuracy from traditional genetic evaluation. GE-EPD will be an effective tool to enable faster genetic improvement through more dependable selection of young animals.
Resumo:
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse. © 2013 Petersen et al.
Resumo:
A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.
Resumo:
Background: Because of ethical and medico-legal aspects involved in the training of cutaneous surgical skills on living patients, human cadavers and living animals, it is necessary the search for alternative and effective forms of training simulation. Aims: To propose and describe an alternative methodology for teaching and learning the principles of cutaneous surgery in a medical undergraduate program by using a chicken-skin bench model. Materials and Methods: One instructor for every four students, teaching materials on cutaneous surgical skills, chicken trunks, wings, or thighs, a rigid platform support, needled threads, needle holders, surgical blades with scalpel handles, rat-tooth tweezers, scissors, and marking pens were necessary for training simulation. Results: A proposal for simulation-based training on incision, suture, biopsy, and on reconstruction techniques using a chicken-skin bench model distributed in several sessions and with increasing levels of difficultywas structured. Both feedback and objective evaluations always directed to individual students were also outlined. Conclusion: The teaching of a methodology for the principles of cutaneous surgery using a chicken-skin bench model versatile, portable, easy to assemble, and inexpensive is an alternative and complementary option to the armamentarium of methods based on other bench models described. © Indian Journal of Dermatology 2013.
Resumo:
We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields. © FUNPEC-RP.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)