973 resultados para metal chelating ability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following growth doping strategy and using dopant oxides nanocrystals as dopant sources, we report here two different transition-metal ions doped in a variety of group II-VI semiconductor nanocrystals. Using manganese oxide and copper oxide nanocrystals as corresponding dopant sources, intense photoluminescence emission over a wide range of wavelength has been observed for different host nanocrystals. Interestingly, this single doping strategy is successful in providing such highly emissive nanocrystals considered here, in contrast with the literature reports that would suggest synthesis strategies to be highly specific to the particular dopant, host, or both. We investigate and discuss the possible mechanism of the doping process, supporting the migration of dopant ions from dopant oxide nanocrystals to host nanocrystals as the most likely scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first principles calculations, we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms can bind up to 5 H-2-molecules. The average binding energy of similar to 0.3 eV/H favorably lies within the reversible adsorption range. Among the first row TM atoms, Sc and Ti are found to be the optimum in maximizing the H-2 storage (similar to 8 wt %) on the metallacarborane cluster. Being an integral part of the cage, TMs do not suffer from the aggregation problem, which has been the biggest hurdle for the success of TM-decorated graphitic materials for hydrogen storage. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks, which are thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excellent metal support interaction between palladium (Pd) and titanium nitride (TiN) is exploited in designing an efficient anode material. Pd-TN, that could be useful for direct ethanol fuel cell in alkaline media. The physicochemical and electrochemical characterization of the Pd-TiN/electrolyte interface reveals an efficient oxidation of ethanol coupled with excellent stability of the catalyst under electrochemical conditions. Characterization of the interface using in situ Fourier transform infrared spectroscopy (in situ FITR) shows the production CO2 at low overvoltages revealing an efficient cleaving of the C-C bond. The performance comparison of Pd supported on TiN (Pd-TiN) with that supported on carbon (Pd-C) clearly demonstrates the advantages of TiN support over carbon. A positive chemical shift of Pd (3d) binding energy confirms the existence of metal support interaction between pd and TiN, which in turn helps weaken the Pd-CO synergetic bonding interaction. The remarkable ability of TiN to accumulate -OH species on its surface coupled with the strong adhesion of Pd makes TiN an active support material for electrocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new transition metal complexes using 2-pyrimidineamidoxime (pmadH(2)) as multidentate chelating and/or bridging ligand have been synthesized and characterized. The ligand pmadH(2) has two potential bridging functional groups mu-O and mu-(N-O)] and consequently shows several coordination modes. While a polymeric 1D Cu-II complex Cu(pmadH(2))(2)(NO3)](NO3) (1) was obtained upon treatment of Cu(NO3)(2)center dot 3H(2)O with pmadH(2) at room temperature in the absence of base, a high temperature reaction in the presence of base yielded a tetranuclear Cu-II-complex Cu-4(pmad)(2)(pmadH)(2)(NO3)](NO3)(H2O) (2). One of the Cu-II centers is in a square pyramidal environment while the other three are in a square planar geometry. Reaction of the same ligand with an equimolar mixture of both Cu(NO3)(2)center dot 3H(2)O and NiCl2 center dot 6H(2)O yielded a tetranuclear heterometallic (Cu2Ni2II)-Ni-II complex Cu2Ni2(pmad)(2)(pmadH)(2)Cl-2]center dot H2O (3) containing both square planar (Ni-II) and square pyramidal (Cu-II) metal centers. Complexes 1-3 represent the first examples of polynuclear metal complexes of 2-pyrimidineamidoxime. The analysis of variable temperature magnetic susceptibility data of 2 reveals that both ferromagnetic and antiferromagnetic interactions exist in this complex (J(1) = +10.7 cm(-1) and J(2) = -2.7 cm(-1) with g = 2.1) leading to a resultant ferromagnetic behavior. Complex 3 shows expected antiferromagnetic interaction between two Cu-II centers through -N-O- bridging pathway with J(1) = -3.4 cm(-1) and g = 2.08. DFT calculations have been used to corroborate the magnetic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyridinium poly(hydrogen fluoride) reacts with the oxide of vanadium(V) and chlorides of chromium(III), iron (III) and Co(II) at room temperature forming the pyridinium salts of hexafluoro vanadate(V), hexafluorochromate(III), hexafluoroferrate(III) and hexafluorocobaltate(II) in near quantitative yields (80%). These pyridinium salts are the precursors for the preparation of the alkali metal hexafluorometallates by metathetic reactions in acetonitrile medium with the corresponding metal chlorides. The prepared salts have been identified by their infrared spectral data and elemental analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on in-situ Mossbauer and X-ray diffraction studies, it is shown that in the Fe/TiO2 catalyst, the anatase-rutile transformation of the TiO2 support is facilitated by the Fe2+ ions formed during the reduction. The transformation occurs at lower temperatures in Th/TiO2 and Cu/TiO2 compared to pure TiO2. In general, the transformation of anatase to rutile seems to occur at or below the temperature (approximately 770 K) at which strong-metal-support-interaction manifests itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objectives in this thesis were to isolate and identify the phenolic compounds in wild (Sorbus aucuparia) and cultivated rowanberries, European cranberries (Vaccinium microcarpon), lingonberries (Vaccinium vitis-idaea), and cloudberries (Rubus chamaemorus), as well as to investigate the antioxidant activity of phenolics occurring in berries in food oxidation models. In addition, the storage stability of cloudberry ellagitannin isolate was studied. In wild and cultivated rowanberries, the main phenolic compounds were chlorogenic acids and neochlorogenic acids with increasing anthocyanin content depending on the crossing partners. The proanthocyanidin contents of cranberries and lingonberries were investigated, revealing that the lingonberry contained more rare A-type dimers than the European cranberry. The liquid chromatography mass spectrometry (LC-MS) analysis of cloudberry ellagitannins showed that trimeric lambertianin C and sanguiin H-10 were the main ellagitannins. The berries, rich in different types of phenolic compounds including hydroxycinnamic acids, proanthocyanidins, and ellagitannins, showed antioxidant activity toward lipid oxidation in liposome and emulsion oxidation models. All the different rowanberry cultivars prevented lipid oxidation in the same way, in spite of the differences in their phenolic composition. In terms of liposomes, rowanberries were slightly more effective antioxidants than cranberry and lingonberry phenolics. Greater differences were found when comparing proanthocyanidin fractions. Proanthocyanidin dimers and trimers of both cranberries and lingonberries were most potent in inhibiting lipid oxidation. Antioxidant activities and antiradical capacities were also studied with hydroxycinnamic acid glycosides. The sinapic acid derivatives of the hydroxycinnamic acid glycosides were the most effective at preventing lipid oxidation in emulsions and liposomes and scavenging radicals in DPPH assay. In liposomes and emulsions, the formation of the secondary oxidation product, hexanal, was inhibited more than that of the primary oxidation product, conjugated diene hydroperoxides, by hydroxycinnamic acid derivatives. This indicates that they are principally chain-breaking antioxidants rather than metal chelators, although they possess chelating activity as well. The storage stability test of cloudberry ellagitannins was performed by storing ellagitannin isolate and ellagitannins encapsulated with maltodextrin at different relative vapor pressures. The storage stability was enhanced by the encapsulation when higher molecular weight maltodextrin was used. The best preservation was achieved when the capsules were stored at 0 or 33% relative vapor pressures. In addition, the antioxidant activities of encapsulated cloudberry extracts were followed during the storage period. Different storage conditions did not alter the antioxidant activity, even though changes in the ellagitannin contents were seen. The current results may be of use in improving the oxidative stability of food products by using berries as natural antioxidants.