946 resultados para mesh opening rigidity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Millions of houses and apartments built before 1978 have paint that contains lead. Chips, dust, and fumes from this paint can be very dangerous if they are not handled properly. Lead is particularly hazardous to unborn babies, infants, and young children. Volunteers in painting and housing-rehabilitation programs often work in homes that contain lead paint. The work they perform can create a lead hazard if they disturb this paint and produce paint chips or dust. Volunteers Opening Doors is a video program for these volunteers. It explains how volunteers can protect housing residents,themselves, and their families from lead poisoning by using the five keys to lead safety: 1. Protect residents and their belongings. 2. Prepare the work area. 3. Protect yourself from dust and debris. 4. Work wet. 5. Work clean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in January/February 2011 were determined for 38 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM17/3 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 38 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in October 2011 were determined for 22 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM19/1b cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 22 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.