915 resultados para mesh: Cybernetics
Resumo:
As Virtual Reality pushes the boundaries of the human computer interface new ways of interaction are emerging. One such technology is the integration of haptic interfaces (force-feedback devices) into virtual environments. This modality offers an improved sense of immersion to that achieved when relying only on audio and visual modalities. The paper introduces some of the technical obstacles such as latency and network traffic that need to be overcome for maintaining a high degree of immersion during haptic tasks. The paper describes the advantages of integrating haptic feedback into systems, and presents some of the technical issues inherent in a networked haptic virtual environment. A generic control interface has been developed to seamlessly mesh with existing networked VR development libraries.
Resumo:
The arrival of a student who is Blind in the School of Systems Engineering at the University of Reading has made it an interesting and challenging year for all. Visually impaired students have already graduated from other Schools of the University and the School of Systems Engineering has seen three students with visual impairment graduate recently with good degrees. These students could access materials - and do assessments - essentially by means of enlargement and judicious choice of options. The new student had previously been supported by a specialist college. She is a proficient typist and also a user of both Braille and JAWS screen reader, and she is doing a joint course in Cybernetics and Computer Science. The course requires mathematics which itself includes graphs, and also many diagrams including numerous circuit diagrams. The University bought proven equipment such as a scanner to process books into speech or Braille, and screen reading software as well as a specialist machine for producing tactile diagrams for educational use. Clearly it is also important that the student can access assessments and examinations and present answers for marking or feedback (by sighted staff). So the School also used innovative in-house tactile methods to represent diagrams. This paper discusses the success or otherwise of various modifications of course delivery and the way forward for the next three years.
Resumo:
In this paper an attempt is described to increase the range of human sensory capabilities by means of implant technology. The key aim is to create an additional sense by feeding signals directly to the human brain, via the nervous system rather than via a presently operable human sense. Neural implant technology was used to directly interface a human nervous system with a computer in a one off trial. The output from active ultrasonic sensors was then employed to directly stimulate the human nervous system. An experimental laboratory set up was used as a test bed to assess the usefulness of this sensory addition.
Resumo:
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) criteria is proposed for the construction of radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines an RBF node, namely, its center vector and diagonal covariance matrix, by minimizing the LOO statistics. For regression application, the LOO criterion is chosen to be the LOO mean-square error, while the LOO misclassification rate is adopted in two-class classification application. This OFS-LOO algorithm is computationally efficient, and it is capable of constructing parsimonious RBF networks that generalize well. Moreover, the proposed algorithm is fully automatic, and the user does not need to specify a termination criterion for the construction process. The effectiveness of the proposed RBF network construction procedure is demonstrated using examples taken from both regression and classification applications.
Resumo:
This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.