914 resultados para mechanism of salt tolerant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different kinds of lesions can occur to DNA, and among them, one of the most dangerous is the double strand breaks (DSBs). Actually, DSBs can result in mutations, chromosome translocation or deletion. For this kind of lesions, depending on cell cycle phase as well as DNA-end resection, cells have developed specific repair pathways. Among these the error-free homologous recombination (HR) plays a crucial role. HR takes place during S/G2 phases, since the sister chromatids can be used as homologous templates. In this process, hRAD51 and BRCA2 are key players. hRAD51 is a recombinase of 339 amino-acids highly conserved through evolution which displays an intrinsic tendency to form oligomeric structures. BRCA2 is a very large protein of 3418 amino-acids, essential for the recruitment and accumulation of hRAD51 in the nucleus repairing-foci. BRCA2 interacts with hRAD51 through eight, so-called, BRC repeats, composed of 35-40 amino-acids. Mutations within this region have been linked to an increased risk of ovarian cancer development. In particular, several reports highlighted that missense mutations within one BRC repeat can hamper BRCA2 activity. Considering the close homology between the BRC repeats, it is striking how these mutations cannot be counterbalanced by the other non-mutated repeats preserving the function and the interactions of BRCA2 with hRAD51. To date the only interaction that has been structurally elucidated, is the one taking place amid the fourth BRC repeat and hRAD51. Only very little biophysical information is available on the interaction of the other BRC repeats with hRAD51. This thesis aims at elucidating the mechanism of hRAD51-BRCA2 interaction, by means of biophysical and structural approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular L-glutaminase production by Beau6eria sp., isolated from marine sediment, was observed during solid state fermentation using polystyrene as an inert support. Maximal enzyme production (49.89 U:ml) occurred at pH 9.0, 27°C, in a seawater based medium supplemented with L-glutamine (0.25% w:v) as substrate and D-glucose (0.5% w:v) as additional carbon source, after 96 h of incubation. Enzyme production was growth associated. Results indicate scope for production of salt tolerant L-glutaminase using this marine fungus

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the accelerating processes of soil salinization and shortage of fresh water, the practice of saline agriculture is gaining momentum in many areas of the world. However, there are some concerns that using saline water for irrigation may be non-environmentally sustainable, with potential to cause irreversible soil degradation. In addition, there is a lack of information on the morphological, physiological, and biochemical changes that can occur in plants when irrigated with saline water. In light of the above, the major aim of this work was to investigate the effects of a range of water salinity levels and irrigation regimes on the performances of salt tolerant species promising as future crop plants for saline agriculture. The following objectives were addressed: To determine the effects of different water regimes (leaching irrigation vs. no leaching irrigation) with water at increasing salinity concentrations on the growth, ion accumulation and water relations of Sorghum bicolor plants grown under saline soil conditions. To describe the germination response of Salicornia europaea seeds across a wide range of water salinity levels through six reliable indices for screening salinity tolerance at the seed germination stage. To explore the different physiological responses of six wild halophytes commonly found in the Mediterranean area (Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor), and rank their tolerance after exposure to growing levels of water salinity. To identify the main adaptation mechanisms that distinguish C3 from C4 halophytes when exposed to increasing salinity in the growth media, through a comparative study between the C3 species Atriplex hortensis and the C4 species Atriplex halimus. To identify the main adaptation mechanisms that distinguish annual from perennial halophytes when exposed to severe conditions of salinity and drought, through a comparative analysis between two annual Salicornia spp. and the perennial Sarcocornia fruticosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study led to the recognition of Natrinema sp. BTSH 10 isolated from saltern ponds, as an ideal candidate species for production of gelatinase, which was noted as a halozyme capable of showing enzyme activity in the presence of 15% NaCl. Results obtained during the course of the present study indicated potential for application of this enzyme in industrial catalysis that are performed in the presence of high concentrations of salt. The enzyme characteristics noted with this gelatinase also indicate the scope for probable applications in leather industry, meat tenderization, production of fish sauce and soy sauce. Since halophilic proteases are tolerant to organic solvents, they could be used in antifouling coating preparations used to prevent biofouling of submarine equipments. The gelatinase from haloarchaea could be considered as a probable candidate for peptide synthesis. However, further studies are warranted on this haloarcheal gelatinase particularly on structure elucidation and enzyme engineering to suit a wide range of applications. There is immense scope for developing this halozyme as an industrial enzyme once thorough biochemistry of this gelatinase is studied and a pilot scale study is conducted towards industrial production of this enzyme under fermentation is facilitated. Based on the present study it is concluded that haloarchaea Natrinema sp. that inhabit solar saltern ponds are ideal source for deriving industrially important halozymes and molecular studies on enzymes are prerequisite for their probable industrial applications. This is the first time this species of archaea is recognized as a source of gelatinase enzyme that has potential for industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of increasing salinity on a range of chlorophyll fluorescence parameters in foliar tissue of 30 Acer genotypes was examined. The magnitude of the fluorescence responses differed among genotypes ranging from minor effects to substantial leaf tissue damage. Interpretation of the fluorescence expressions provided an insight into mechanisms of salt damage and resilience among genotypes. Based on reductions in a performance index (PIp) following salinity, genotypes were ranked in order from tolerant to sensitive. Based on this ranking criterion, marked differences in salt tolerance among genotypes were distinguished. It is concluded that chlorophyll fluorescence offers a rapid screening technique for assessing the foliar salinity tolerance of urban trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For analyzing the mechanism of energy transduction in the “motor” protein, myosin, it is opportune both to model the structural change in the hydrolytic transition, ATP (myosin-bound) + H2O → ADP⋅Pi (myosin-bound) and to check the plausibility of the model by appropriate site-directed mutations in the functional system. Here, we made a series of mutations to investigate the role of the salt-bridge between Glu-470 and Arg-247 (of chicken smooth muscle myosin) that has been inferred from crystallography to be a central feature of the transition [Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., & Rayment, I. (1995) Biochemistry 34, 8960–8972]. Our results suggest that whether in the normal, or in the inverted, direction an intact salt-bridge is necessary for ATP hydrolysis, but when the salt-bridge is in the inverted direction it does not support actin activation. Normally, fluorescence changes result from adding nucleotides to myosin; these signals are reported by Trp-512 (of chicken smooth muscle myosin). Our results also suggest that structural impairments in the 470–247 region interfere with the transmission of these signals to the responsive Trp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field observations on an unconfined coastal aquifer showed that a groundwater pulse, generated by it moderate (significant wave height, H-sig similar to 4.5 m) wave/storm event, induced significant oscillations in the salt-freshwater interface of the order of several metres in the horizontal direction. A dynamic sharp-interface model is developed to quantify the mechanism of these interface oscillations. The model uses the 50% seawater salinity contour as the location of the equivalent sharp-interface. The model was calibrated against the observed groundwater table fluctuations. It predicted reasonably well the interface oscillations with a slight over-prediction of the oscillation magnitude and a steepening of the interface. The neglect of mixing in the salt-freshwater mixing zone by the sharp-interface model is suggested as a possible contributor to the discrepancies between the model predictions and observations. In contrast with the significant wave effects, there was no observable response of the interface to diurnal or semidiurnal tides. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex-structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.