967 resultados para mechanical ventilation, neuraly adjusted ventilatory assist
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems (MCS) have led to additional strategies in the treatment of end stage heart failure (HF). Heart transplantation (HTx) can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVAD). Mechanical support of the failing left ventricle enables appropriate hemodynamic stabilisation and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group 0 or B, with a body weight over 90 kg and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent peri-operative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of a LVAD represents a surgical challenge. This review summarises the current knowledge about LVAD and continuous flow devices especially since the latter have been increasingly used worldwide in the most recent years. The review is also based on the institutional experience at Berne University Hospital between 2000 and 2012. Apart from short-term devices (Impella, Cardiac Assist, Deltastream and ECMO) which were used in approximately 150 cases, 85 pulsatile long-term LVAD, RVAD or bi-VAD and 44 non-pulsatile LVAD (mainly HeartMateII and HeartWare) were implanted. After an initial learning curve, one-year mortality dropped to 10.4% in the last 58 patients.
Resumo:
Exertional oscillatory ventilation (EOV) is an ominous prognostic sign in chronic heart failure (CHF), but little is known about the success of specific therapeutic interventions. Our aim was to study the impact of an exercise training on exercise capacity and cardiopulmonary adaptation in stable CHF patients with left ventricular systolic dysfunction and EOV. 96 stable CHF patients with EOV were included in a retrospective analysis (52 training versus 44 controls). EOV was defined as follows: 1) three or more oscillatory fluctuations in minute ventilation (V'(E)) during exercise; 2) regular oscillations; and 3) minimal average ventilation amplitude ≥5 L. EOV disappeared in 37 (71.2%) out of 52 patients after training, but only in one (2.3%) out of 44 without training (p<0.001). The decrease of EOV amplitude correlated with changes in end-tidal carbon dioxide tension (r= -0.60, p<0.001) at the respiratory compensation point and V'(E)/carbon dioxide production (V'(CO(2))) slope (r=0.50, p<0.001). Training significantly improved resting values of respiratory frequency (f(R)), V'(E), tidal volume (V(T)) and V'(E)/V'(CO(2)) ratio. During exercise, V'(E) and V(T) reached significantly higher values at the peak, while f(R) and V'(E)/V'(CO(2)) ratio were significantly lower at submaximal exercise. No change was noted in the control group. Exercise training leads to a significant decrease of EOV and improves ventilatory efficiency in patients with stable CHF.
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.
Resumo:
Implantation of a ventricular assist device (VAD) reduces short-term mortality and morbidity and provides patients with reasonable quality of life even though it may also be a long-lasting emotional burden. This study was conducted to analyze the long-time emotional consequences of VAD implantation, followed by heart transplantation in patients and spouses.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.
Resumo:
Arterial waves are seen as possible independent mediators of cardiovascular risks, and the wave intensity analysis (WIA) has therefore been proposed as a method for patient selection for ventricular assist device (VAD) implantation. Interpreting measured wave intensity (WI) is challenging and complexity is increased by the implantation of a VAD. The waves generated by the VAD interact with the waves generated by the native heart, and this interaction varies with changing VAD settings. Eight sheep were implanted with a pulsatile VAD (PVAD) through ventriculo-aortic cannulation. The start of PVAD ejection was synchronized to the native R-wave and delayed between 0 % - 90 % of the cardiac cycle in 10 % steps or phase shifts (PS). Pressure and velocity signals were registered, using a combined Doppler and pressure wire positioned in the abdominal aorta, and used to calculate the WI. Depending on the PS, different wave interference phenomena occurred. Maximum unloading of the left ventricle (LV) coincided with constructive interference and maximum blood flow pulsatility, and maximum loading of the LV coincided with destructive interference and minimum blood flow pulsatility. We believe, that non-invasive WIA could potentially be used clinically to assess the mechanical load of the LV, and to monitor the peripheral hemodynamics such as blood flow pulsatility and risk of intestinal bleeding.
Resumo:
Clinical trials have shown a beneficial effect of mechanical thrombectomy in acute ischemic stroke patients treated within six up to even 12 h after symptom onset. This treatment was already performed in selected hospitals in Belgium before completion of the randomized controlled trials. Outcome data on these procedures in Belgium have not been published. We performed a retrospective multicenter study of all patients with acute ischemic stroke treated with mechanical endovascular therapy in four hospitals in Belgium. Clinical outcomes, as measured by the modified Rankin Scale (mRS), site of arterial occlusion, reperfusion and the association between these variables were studied. The study included 80 patients: 65 patients with an occlusion in the anterior circulation and 15 with an occlusion in the posterior circulation. Good functional outcome (GFO) rates, defined as mRS 0-2 at 90 days, were 42 % in all patients, 44 % in anterior circulation stroke and 34 % in posterior circulation stroke. Reperfusion was achieved in 78 % of patients; more (100 %) in patients with posterior compared to patients with anterior circulation stroke (72 %; p = 0.02). The rate of GFO was greater in patients with reperfusion versus patients in whom reperfusion was not achieved (adjusted OR 8.2, 95 % CI 2.0-34.2). Symptomatic intracerebral hemorrhage was documented in 5 % of all patients. Endovascular treatment with mechanical devices for acute ischemic stroke in Belgium results in GFO and reperfusion rates similar to recently published results in the endovascular-treated arms of randomized clinical trials. Rates of symptomatic intracranial hemorrhage are low and comparable to other cohort studies and clinical trials.
Resumo:
The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) was founded on 10 December 2009 with the initiative of Roland Hetzer (Deutsches Herzzentrum Berlin, Berlin, Germany) and Jan Gummert (Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany) with 15 other founding international members. It aims to promote scientific research to improve care of end-stage heart failure patients with ventricular assist device or a total artificial heart as long-term mechanical circulatory support. Likewise, the organization aims to provide and maintain a registry of device implantation data and long-term follow-up of patients with mechanical circulatory support. Hence, EUROMACS affiliated itself with Dendrite Clinical Systems Ltd to offer its members a software tool that allows input and analysis of patient clinical data on a daily basis. EUROMACS facilitates further scientific studies by offering research groups access to any available data wherein patients and centres are anonymized. Furthermore, EUROMACS aims to stimulate cooperation with clinical and research institutions and with peer associations involved to further its aims. EUROMACS is the only European-based Registry for Patients with Mechanical Circulatory Support with rapid increase in institutional and individual membership. Because of the expeditious data input, the European Association for Cardiothoracic Surgeons saw the need to optimize the data availability and the significance of the registry to improve care of patients with mechanical circulatory support and its potential contribution to scientific intents; hence, the beginning of their alliance in 2012. This first annual report is designed to provide an overview of EUROMACS' structure, its activities, a first data collection and an insight to its scientific contributions.
Resumo:
The precise pathophysiology of fibromyalgia, a syndrome characterized by, among other symptoms, chronic widespread pain, remains to be elucidated (Abeles et al., 2007). The fact that, when subjected to the same amount of stimulation, patients show enhanced brain responses as compared to controls provides evidence of central pain augmentation in this syndrome. We aimed to characterize brain response differences when stimulation is adjusted to elicit similar subjective levels of pain in both groups.
Resumo:
Dentro da classe Reptilia, a ordem Testudines possui algumas características exclusivas, tais como a fusão das costelas e da coluna vertebral e a perda dos músculos intercostais, inviabilizando a ventilação costal. Além disso, as posições naturais que os Testudines exibem podem influenciar a mecânica ventilatória. O presente estudo teve como objetivo testar a influência do posicionamento do corpo sobre a mecânica ventilatória através da complacência estática e dinâmica e analisar através da respirometria aberta o padrão ventilatório e o custo metabólico da ventilação através da exposição em normóxia, hipóxia e hipercarbia em Trachemys scripta e Chelonoidis carbonarius. Os volumes pulmonares, complacência estática e dinâmica em C. carbonarius foram inferiores aos de T. scripta e outras espécies de Testudines já estudadas. Verificou-se também influência das posições sobre a mecânica ventilatória nas duas espécies, sendo a posição de membros e cabeça retraídos na carapaça apresentando os menores valores (p<0,05). Hipóxia e hipercarbia estimularam o aumento da ventilação nas duas espécies estudadas (p<0,05), sendo observadas maiores alterações da frequência ventilatória e volume corrente em C. carbonarius. Os valores de custo metabólico da ventilação foram baixos devido à uma diminuição no consumo de oxigênio em hipóxia e hipercarbia, indicando depressão metabólica em ambas as espécies ou então o método para calcular esse custo não ser ideal. Ao relacionar os dados de consumo de oxigênio com os de ventilação, verificou-se a possibilidade de shunt cardíaco esquerdo-direito. Será necessário calcular o trabalho mecânico da ventilação a fim de entender melhor a mecânica ventilatória nas duas espécies e posteriormente relacionar os dados de ventilação e custo metabólico da ventilação com os de trabalho mecânico.
Resumo:
Introdução: A DPOC é uma doença respiratória prevenível e tratável, caracterizada por limitação persistente ao fluxo aéreo, hiperinsuflação e aprisionamento aéreo. A dispneia e a intolerância aos esforços, decorrentes destas alterações fisiopatológicas sofre influência de vários fatores. Dentre estes, o recrutamento e a sobrecarga imposta aos músculos inspiratórios e expiratórios são de fundamental importância, porém a participação destes ainda não foi completamente elucidada em diferentes gravidades da doença. Objetivos: O objetivo principal deste estudo foi avaliar a mecânica ventilatória, e o grau de recrutamento da musculatura inspiratória e expiratória na DPOC leve e grave, na condição de repouso e durante um teste máximo de exercício, comparado a um grupo de indivíduos saudáveis. Metodologia: Trata-se de um estudo transversal envolvendo 36 indivíduos, sendo 24 pacientes portadores de DPOC e 12 voluntários sadios. As avaliações foram divididas em 2 visitas. No D1, foram realizadas uma avaliação clínica, avaliação de dispneia (mMRC) e de qualidade de vida (SGRQ), além da prova de função pulmonar completa. Na 2ª visita, realizada com intervalo de 1 semana, foram avaliadas: as pressões respiratórias máximas estáticas por meio de métodos volitivos (PImax, PEmax, SNIP, Pes sniff, Pga sniff e Pdi sniff) e não volitivos (Twitch cervical bilateral e T10); avaliação da sincronia toracoabdominal por pletismografia de indutância; avaliação do recrutamento dos músculos inspiratórios e expiratórios ao repouso pela eletromiografia de superfície; e, posteriormente, um teste de exercício cardiopulmonar incremental para estudo de todas essas variáveis no esforço. Resultados: Foram avaliados 24 pacientes (12 leves e 12 graves) e 12 indivíduos saudáveis da mesma faixa etária. A maioria dos pacientes apresentava comprometimento significativo da qualidade de vida e os pacientes do grupo grave eram mais sintomáticos. A função pulmonar encontrava-se alterada na maioria dos pacientes. Destes, 79,2% apresentavam aprisionamento aéreo e 70,8% tinham redução da DLCO. Tais alterações foram semelhantes nos 2 grupos de pacientes. A força muscular estática medida por métodos volitivos e não volitivos estava reduzida nos 2 grupos e mostrou relação com o VEF1. No exercício, a dispneia foi o principal motivo para interrupção do teste em 70% dos pacientes. A HD esteve presente em 87,5% dos pacientes. O comportamento das pressões respiratórias foi significativamente diferente entre os 3 grupos. Os pacientes com DPOC apresentaram maior atividade diafragmática (Pdi) comparado aos controles e a participação da musculatura expiratória também foi maior neste grupo, principalmente nos graves. Apesar disso, os pacientes com DPOC apresentaram uma eficiência mecânica reduzida, ou seja, esse incremento da força muscular foi insuficiente para manter uma ventilação adequada para uma determinada carga. Com o aumento da demanda ventilatória, houve recrutamento precoce e progressivo dos músculos inspiratórios e expiratórios durante o exercício. O trabalho resistivo e o expiratório foram significativamente diferentes entre os controles e os pacientes com DPOC desde o início do exercício. Como consequência destas alterações, a intensidade da dispneia durante o TECP foi maior nos pacientes com DPOC (leve e grave) para a mesma carga e mesma ventilação-minuto (VE), quando comparada aos indivíduos do grupo-controle. Conclusões: O conjunto destes achados demonstra que o comprometimento dos músculos inspiratórios e expiratórios contribuiu significativamente para a dispneia e a intolerância ao exercício tanto no DPOC leve quanto no DPOC grave. E que este comprometimento pode não ser detectado com os testes máximos de força ao repouso
Resumo:
BACKGROUND Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. METHODS In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. RESULTS ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p < 0.001) and showed fewer incorrect decompressions (26 vs. 33 %, p = 0.044). On the other hand, absolute hands-off time was higher in the hfCPR group (67 vs. 60 s, p = 0.021). CONCLUSIONS The quality of CPR with human feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Objective: To investigate the effect of standing with assistance of the tilt table on ventilatory parameters and arterial blood gases in intensive care patients. Design: Consecutive sample. Setting: Tertiary referral hospital. Participants: Fifteen adult patients who had been intubated and mechanically ventilated for more than 5 days (3 subjects successfully weaned, 12 subjects being weaned). Intervention: Passive tilting to 70degrees from the horizontal for 5 minutes using a tilt table. Main Outcome Measures: Minute ventilation (VE), tidal volume (VT), respiratory rate, and arterial partial pressure of oxygen (Pao(2)) and carbon dioxide (Paco(2)). Results: Standing in the tilted position for 5 minutes produced significant increases in VE (P
Resumo:
Background and objective: There are no data about the influence of anaesthetics on cardiovascular variables during pressure support ventilation of the lungs through the laryngeal mask airway. We compared propofol, sevoflurane and isoflurane for maintenance of anaesthesia with the ProSeal (R) laryngeal mask airway during pressure support ventilation. Methods: Sixty healthy adults undergoing peripheral musculo-skeletal surgery were randomized for maintenance with sevoflurane end-tidal 29%, isoflurane end-tidal 1.1% or propofol 6 mg kg(-1) h(-1) in oxygen 33% and air. Pressure support ventilation comprised positive end-expiratory pressure set at 5 cmH(2)O, and pressure support set 5 cmH(2)O above positive end-expiratory pressure. Pressure support was initiated when inspiration produced a 2 cmH(2)O reduction in airway pressure. A blinded observer recorded cardiorespiratory variables (heart rate, mean blood pressure, oxygen saturation, air-way occlusion pressure, respiratory rate, expired tidal volume, expired minute volume and end-tidal CO2), adverse events and emergence times. Results: Respiratory rate and minute volume were 10-21% lower, and end-tidal CO2 6-11% higher with the propofol group compared with the sevoflurane or isoflurane groups, but otherwise cardiorespiratory variables were similar among groups. No adverse events occurred in any group. Emergence times were longer with the propofol group compared with the sevoflurane or isoflurane groups (10 vs. 7 vs. 7 min). Conclusion: Lung ventilation is less effective and emergence times are longer with propofol than sevoflurane or isoflurane for maintenance of anaesthesia during pressure support ventilation with the ProSeal (R) laryngeal mask airway. However, these differences are small and of doubtful clinical importance.