999 resultados para marcadores neurais
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Ciências fisiológicas
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Não disponível
Resumo:
Pós-graduação em Design - FAAC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The aim of this work is to advance a new approach for estimating demographic density, through combining a Geographic Information System with GMDH Neural Networks. The model that is suggested parts the analyzed space into a rectangular grid formed by multiple cells measuring 0.01 km2 each. The forecasts are elaborated based on the demographic density in each cell and in its neighboring cells at a given time. Despite the limited availability of data during the modeling phase, the utilization of this method for studying a Brazilian medium-sized city presented promising results.
Resumo:
Neste artigo é apresentada uma abordagem para aumentar a eficácia das Redes Neurais Artificiais de Funções de Base Radial utilizando um algoritmo de agrupamento de dados via Floresta de Caminhos Ótimos. Algumas técnicas comumente empregadas para essa tarefa, como o conhecido k-médias, requerem um determinado número de classes/agrupamentos prévio à sua execução. Embora o número de classes seja conhecido em problemas supervisionados, o número real de agrupamentos é difícil de ser encontrado, dado que uma classe pode ser representada por mais de um agrupamento. Experimentos em nove bases de dados, em conjunto com análises estatísticas, demonstraram que o classificador por Floresta de Caminhos Ótimos possui um melhor desempenho que a técnica k-médias, bem como encontra as médias das distribuições Gaussianas em posições muito similares às encontradas por este último. Entretanto, o classificador por Floresta de Caminhos Ótimos possui um custo computacional maior, dado que a sua etapa de treinamento é mais custosa que a da técnica k-médias.