937 resultados para mammary tumorigenesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventy-five percent of breast cancers are estrogen receptor α positive (ER(+)). Research on these tumors is hampered by lack of adequate in vivo models; cell line xenografts require non-physiological hormone supplements, and patient-derived xenografts (PDXs) are hard to establish. We show that the traditional grafting of ER(+) tumor cells into mammary fat pads induces TGFβ/SLUG signaling and basal differentiation when they require low SLUG levels to grow in vivo. Grafting into the milk ducts suppresses SLUG; ER(+) tumor cells develop, like their clinical counterparts, in the presence of physiological hormone levels. Intraductal ER(+) PDXs are retransplantable, predictive, and appear genomically stable. The model provides opportunities for translational research and the study of physiologically relevant hormone action in breast carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Screening mammography is the only imaging modality with proved decrease in breast cancer mortality. Ultrasound has been proposed as additional tool for screening. Controversies remain about the real value of sonography in this setting. In Caucasian women with dense breast, sonography improves significantly breast cancer detection, but also increases the false positive cases, biopsies and costs. A careful selection of women who may benefit from additional screening with sonography is mandatory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular matrix proteins and to other cells. Integrins are important in embryonic development, structural integrity of connective tissue, blood thrombus formation, and immune defense system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is regulated by large conformational changes. Extracellular ligand binding or intracellular effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are thus able to mediate bi-directional signaling. Integrin function is also regulated by intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma membrane, and this has been shown to be important for cell migration and invasion as well. Deregulation of integrin functionality can lead to deleterious illnesses, such as bleeding or inflammatory disorders. It is also evident that integrin deregulation is associated with cancer progression. In this study, a novel Beta1 integrin associating protein, Rab21, was characterized. Rab21 binding to integrin cytoplasmic tail was shown to be important for Beta1 integrin endo- and exocytosis – intracellular trafficking. It was furher shown that this interaction has an important role in cell adhesion, migration, as well as in the final step of cell division, cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic traffic, can lead to defects in cell division and results in formation of multinucleated cells. Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also had impairment in cell division, which could be rescued by Rab21 re-expression. The work demonstrates an important role for Rab21 and Beta1 integrin traffic regulation in cell adhesion and division, and suggests a probable associaton with tumorigenesis. In this study, Beta1 integrin activity regulation was also addressed. A novel cell array platform for genome-scale RNAi screenings was characterized here. More than 4500 genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The effects on Beta1 integrin activity were analyzed upon knock-downs. The screen identified more that 400 putative regulators of Beta1 integrin activity in prostate cancer. In conclusion, this work will help us to understand complex regulatory pathways involved in cancer cell adhesion and migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ErbB receptors (EGFR, ErbB2, ErbB3 and ErbB4) are growth factor receptors that regulate signals of cell differentiation, proliferation, migration and survival. Inappropriate activation of these receptors is associated with the development and severity of many cancers and has prognostic and predictive value in cancer therapy. Drugs, such as therapeutic antibodies, targeted against EGFR and ErbB2, are currently used in therapy of breast, colorectal and head and neck cancers. The role of ErbB4 in tumorigenesis has remained relatively poorly understood. Alternative splicing produces four different isoforms of one ErbB4 gene. These isoforms (JM-a, JM-b, CYT-1 and CYT-2) are functionally dissimilar and proposed to have different roles in carcinogenesis. The juxtamembrane form JM-a undergoes regulated intramembrane proteolysis producing a soluble receptor ectodomain and an intracellular domain that translocates into the nucleus and regulates transcription. Nuclear signaling via JM-a isoform stimulates cancer cell proliferation. This study aimed to develop antibodies targeting the proposed oncogenic ErbB4 JM-a isoform that show potential in inhibiting ErbB4 dependent tumorigenesis. Also, the clinical relevance of ErbB4 shedding in cancer was studied. The currently used monoclonal antibody trastuzumab, targeting ErbB2, has shown efficacy in breast cancer therapy. In this study novel tissues with ErbB2 amplification and trastuzumab sensitivity were analyzed. The results of this study indicated that a subpopulation of breast cancer patients demonstrate increased shedding and cleavage of ErbB4. A JM-a isoform-specific antibody that inhibited ErbB4 shedding and consequent activation of ErbB4 had anti-tumor activity both in vitro and in vivo. Thus, ErbB4 shedding associates with tumor growth and specific targeting of the cleavable JM-a isoform could be considered as a strategy for developing novel ErbB-based cancer drugs. In addition, it was demonstrated that ErbB2 amplification is common in intestinal type gastric cancers with poor clinical outcome. Trastuzumab inhibited growth of gastric and breast cancer cells with equal efficacy. Thus, ErbB2 may be a useful target in gastric cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their alpha and beta subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer. In this study, we analyzed integrin regulation, mediated by adaptor binding to the  subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the 5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The alpha5-ZO-1 complex formation was dependent on PKC which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the alpha5beta-ZO-1 complex. Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastases are the major cause of cancer deaths. Tumor cell dissemination from the primary tumor utilizes dysregulated cellular adhesion and upregulated proteolytic degradation of the extracellular matrix for progeny formation in distant organs. Integrins are transmembrane adhesive receptors mediating cellcell and cellmatrix interactions that are crucial for regulating cell migration, invasion, proliferation, and survival. Consequently, increased integrin activity is associated with augmented migration and invasion capacity in several cancer types. Heterodimeric integrins consist of an alpha - and beta-subunit that are held together in a bent conformation when the receptor is inactive, but extension and separation of subdomains is observed during receptor activation. Either inside-out or outside-in activation of receptors is possible through the intracellular molecule binding to an integrin cytoplasmic domain or extracellular ligand association with an integrin ectodomain, respectively. Several regulatory binding partners have been characterized for integrin cytoplasmic beta-domains, but the regulators interacting with the cytoplasmic alpha-domains have remained elusive. In this study, we performed yeast two-hybrid screens to identify novel binding partners for the cytoplasmic integrin alpha-domains. Further examination of two plausible candidates revealed a significant coregulatory role of an integrin alpha-subunit for cellular signaling processes. T-cell protein tyrosine phosphatase (TCPTP) showed a specific interaction with the cytoplasmic tail of integrin alpha1. This association stimulated TCPTP phosphatase activity, leading to negative regulation of epidermal growth factor receptor (EGFR) signaling and diminished anchorage-independent growth. Another candidate, mammary-derived growth inhibitor (MDGI), exhibited binding to several different integrin cytoplasmic alpha-tails through a conserved GFFKR sequence. MDGI overexpression in breast cancer cells altered EGFR trafficking and caused a remarkable accumulation of EGFR in the cytoplasm. We further demonstrated in vivo that MDGI expression induced a novel form of anti-EGFR therapy resistance. Moreover, MDGI binding to α-tails retained integrin in an inactive conformation attenuating integrin-mediated adhesion, migration, and invasion. In agreement with these results, sustained MDGI expression in breast cancer patients correlated with an increased 10-year distant disease-free survival. Taken together, the integrin signaling network is far from a complete view and future work will doubtless broaden our understanding further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most frequent solid tumor among women and the leading cause of cancer related death in women worldwide. The prognosis of breast cancer patients is tightly correlated with the degree of spread beyond the primary tumor. In this thesis, the aim was to identify novel regulators of tumor progression in breast cancer as well as to get insights into the molecular mechanisms of breast cancer progression and metastasis. First, the role of phospholipid remodeling genes and enzymes important for breast cancer progression was studied in breast cancer samples as well as in cultured breast cancer cells. Tumor samples displayed increased de novo synthesized fatty acids especially in aggressive breast cancer. Furthermore, RNAi mediated cell based assays implicated several target genes critical for breast cancer cell proliferation and survival. Second, the role of arachidonic acid pathway members 15-hydroxyprostaglandin dehydrogenase (HPGD) and phospholipase A2 group VII (PLA2G7) in tumorigenesis associated processes was explored in metastatic breast cancer cells. Both targets were found to contribute to epithelial-mesenchymal transition related processes. Third, a high-throughput RNAi lysate microarray screen was utilized to identify novel vimentin expression regulating genes. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was found to promote cellular features connected with metastatic disease, thus implicating MTHFD2 as a potential drug target to block breast cancer cell migration and invasion. Taken together, this study identified several putative targets for breast cancer therapy. In addition, these results provide novel information about the mechanisms and factors underlying breast cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is crucial that lymphocytes patrol the body against foreign intruders and that leukocytes invade inflamed tissues to ameliorate the infection or injury. The adhesion molecules in leukocytes and endothelial cells play an essential role in the immune response by directing the traffic of leukocytes. However, the same molecules that guide leukocyte traffic under physiological conditions are also involved in pathological situations, when an overly excessive or harmful inflammatory response leads to tissue destruction and organ dysfunction or tumor growth. Vascular adhesion protein-1 (VAP-1) and Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1) are endothelial molecules that participate in the adhesion of leukocytes to the endothelia. This study was designed to elucidate, using different inflammation models, the role of VAP-1 and CLEVER-1 in leukocyte migration to the inflamed tissue, and to evaluate the use of antibodies against these molecules as an anti-adhesive therapy. Also, the role of CLEVER-1 during tumorigenesis was studied. Blocking the function of VAP-1 with antibodies significantly decreased the accumulation of leukocytes in the inflamed tissue. Targeting CLEVER-1 prevented cell migration via lymphatic vessels, as well as leukocyte traffic during inflammation. Following the anti-CLEVER-1 antibody treatment the number of immune regulating leukocytes in tumors was reduced, which led to a decrease in tumor growth. However, the normal immune response towards immunization or bacterial infection was not compromised. Thus, VAP-1 and CLEVER-1 are both potential targets for antiinflammatory therapies for preventing the harmful accumulation of leukocytes in inflamed areas. Targeting CLEVER-1 may also inhibit tumor growth by reducing immunosuppressive leukocytes in tumors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapidly growing mycobacteria (RGM) are opportunistic microorganisms and widely distributed into aqueous environment and soil. Human RGM infections are usually associated with contaminated solutions or medical instruments used during invasive procedures. RGM postsurgical infections have recently emerged in Brazil and have caused national alert, considering the risk factors and epidemiological aspects. This study aimed at analysing the main factors linked to the recent RGM outbreaks, with focus on the national epidemic of Mycobacterium massiliense infections related to the BRA100 strains resistant to 2% glutaraldehyde commercial solutions commonly used for preoperative high-level disinfection. Based on previous studies and laboratorial results of assays and colaborations, it has been observed that the cases have been associated with videolaparoscopy for different applications and elective esthetic procedures, such as lipoaspiration and mammary prosthesis implant. Furthermore, outbreaks between 2004 and 2008 and the epidemic in Rio de Janeiro state may be considered particular Brazilian events. Although there are a few epidemiological published studies, some hypotheses based on common aspects related to most national nosocomial occurrences are possible, such as lack of protocols for cleaning and high-level disinfection, use of 2% glutaraldehyde as high-level disinfectant for surgical instruments, and dissemination of M. massiliense BRA100 by unknown mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: We aimed to determine whether clinical examination could adequately ascertain the volume of tissue to be resected during breast-conserving surgery after neoadjuvant therapy. METHODS: We reviewed the clinical reports of 279 patients with histologically diagnosed invasive breast carcinomas treated with neoadjuvant therapy followed by surgery or with primary surgery alone. We estimated volumes of excised tissues, the volume of the tumor mass and the optimal volume required for excision based on 1 cm of clear margins. The actual excess of resected volume was estimated by calculating the resection ratio measured as the volume of the resected specimen divided by the optimal specimen volume. The study endpoints were to analyze the extent of tissue resection and to ascertain the effect of excess resected tissue on surgical margins in both groups of patients. RESULTS: The median tumor diameter was 2.0 and 1.5 cm in the surgery and neoadjuvant therapy groups, respectively. The median volume of resected mammary tissue was 64.3 cm³ in the primary surgery group and 90.7 cm³ in the neoadjuvant therapy group. The median resection ratios in the primary surgery and neoadjuvant therapy groups were 2.0 and 3.3, respectively (p<0.0001). Surgical margin data were similar in both groups. Comparison of the volume of resected mammary tissues with the tumor diameters showed a positive correlation in the primary surgery group and no correlation in the neoadjuvant therapy group. CONCLUSION: Surgeons tend to excise large volumes of tissue during breast-conserving surgery after neoadjuvant therapy, thereby resulting in a loss of the correlation between tumor diameter and volume of the excised specimen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancerous inhibitor of PP2A (CIP2A) is an oncoprotein expressed in several human cancer types. Previously, CIP2A has been shown to promote proliferation of cancer cells. Mechanistically, CIP2A is known to inhibit activity of a tumor suppressor protein phosphatase 2A (PP2A) towards an oncoprotein MYC, further stabilizing MYC in human cancer. However, the molecular mechanisms how CIP2A expression is induced during cellular transformation are not well known. Also, expression, functional role and clinical relevance of CIP2A in breast cancer had not been studied before. The results of this PhD thesis work demonstrate that CIP2A is highly expressed in human breast cancer, and that high expression of CIP2A in tumors is a poor prognostic factor in a subset of breast cancer patients. CIP2A expression correlates with inactivating mutations of tumor suppressor p53 in human cancer. Notably, we demonstrate that p53 inactivation up-regulates CIP2A expression via increased expression of an oncogenic transcription factor E2F1. Moreover, CIP2A promotes expression of E2F1, and this novel positive feedback loop between E2F1 and CIP2A is demonstrated to regulate sensitivity to both p53-dependent and -independent senescence induction in breast cancer cells. Importantly, in a CIP2A deficient breast cancer mouse model, abrogation of CIP2A attenuates mammary tumor formation and progression with features of E2F1 inhibition and induction of senescence. Furthermore, we demonstrate that CIP2A expression defines the cellular response to a senescence-inducing chemotherapy in breast cancer. Taken together, these results demonstrate that CIP2A is an essential promoter of breast cancer tumor growth by inhibiting senescence. Finally, this study implicates inhibition of CIP2A as a promising therapy target for breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1%) and Corynebacterium spp. (35.3%) were the main agents found, followed by Prototheca spp. (4.6%) and Gram negative bacilli (3.6%). In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%). Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.