929 resultados para liquid liquid extraction
Resumo:
Woven monofilament, multifilament, and spun yarn filter media have long been the standard media in liquid filtration equipment. While the energy for a solid-liquid separation process is determined by the engineering work, it is the interface between the slurry and the equipment - the filter media - that greatly affects the performance characteristics of the unit operation. Those skilled in the art are well aware that a poorly designed filter medium may endanger the whole operation, whereas well-performing filter media can make the operation smooth and economical. As the mineral and pulp producers seek to produce ever finer and more refined fractions of their products, it is becoming increasingly important to be able to dewater slurries with average particle sizes around 1 ¿m using conventional, high-capacity filtration equipment. Furthermore, the surface properties of the media must not allow sticky and adhesive particles to adhere to the media. The aim of this thesis was to test how the dirt-repellency, electrical resistance and highpressure filtration performance of selected woven filter media can be improved by modifying the fabric or yarn with coating, chemical treatment and calendering. The results achieved by chemical surface treatments clearly show that the woven media surface properties can be modified to achieve lower electrical resistance and improved dirt-repellency. The main challenge with the chemical treatments is the abrasion resistance and, while the experimental results indicate that the treatment is sufficiently permanent to resist standard weathering conditions, they may still prove to be inadequately strong in terms of actual use.From the pressure filtration studies in this work, it seems obvious that the conventional woven multifilament fabrics still perform surprisingly well against the coated media in terms of filtrate clarity and cake build-up. Especially in cases where the feed slurry concentration was low and the pressures moderate, the conventional media seemed to outperform the coated media. In the cases where thefeed slurry concentration was high, the tightly woven media performed well against the monofilament reference fabrics, but seemed to do worse than some of the coated media. This result is somewhat surprising in that the high initial specific resistance of the coated media would suggest that the media will blind more easily than the plain woven media. The results indicate, however, that it is actually the woven media that gradually clogs during the coarse of filtration. In conclusion, it seems obvious that there is a pressure limit above which the woven media looses its capacity to keep the solid particles from penetrating the structure. This finding suggests that for extreme pressures the only foreseeable solution is the coated fabrics supported by a strong enough woven fabric to hold thestructure together. Having said that, the high pressure filtration process seems to follow somewhat different laws than the more conventional processes. Based on the results, it may well be that the role of the cloth is most of all to support the cake, and the main performance-determining factor is a long life time. Measuring the pore size distribution with a commercially available porometer gives a fairly accurate picture of the pore size distribution of a fabric, but failsto give insight into which of the pore sizes is the most important in determining the flow through the fabric. Historically air, and sometimes water, permeability measures have been the standard in evaluating media filtration performance including particle retention. Permeability, however, is a function of a multitudeof variables and does not directly allow the estimation of the effective pore size. In this study a new method for estimating the effective pore size and open pore area in a densely woven multifilament fabric was developed. The method combines a simplified equation of the electrical resistance of fabric with the Hagen-Poiseuille flow equation to estimate the effective pore size of a fabric and the total open area of pores. The results are validated by comparison to the measured values of the largest pore size (Bubble point) and the average pore size. The results show good correlation with measured values. However, the measured and estimated values tend to diverge in high weft density fabrics. This phenomenon is thought to be a result of a more tortuous flow path of denser fabrics, and could most probably be cured by using another value for the tortuosity factor.
Resumo:
Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.
Resumo:
Tämän diplomityön tavoitteena on määrittää liiketoimintailmapiiri ja markkinapotentiaali Kiinan nestepakkauskartonkimarkkinoilla. Tutkimus tukee nestepakkauskartonkivalmistajan vientitoimintoja. Pääosin käytännön tiedoista koostuva tutkimus suoritettiin keräämällä sekundaääritietoa ja haastattelemalla alan erikoisasiantuntijoita. Suuri ja kasvava väestö sekä nopeasti kehittyvä talous tukee nestepakkauskartonkimarkkinoiden kasvua Kiinassa. Viimeaikainen globalisaatio haittapuolineen saattaa kuitenkin horjuttaa poliittista ja sosiaalista tasapainoa ja tätä kautta ylellisyys hyödykkeiden kuten kartonkipakattujen tuotteiden kysyntää Kiinassa. Tuontirajoitukset Kiinaan ovat laskemassa valtion tämän hetkisen kansainvälistymispolitiikan seurauksena. Kartonki vahvistaa asemaansa kilpailevien pakkausmateriaalien joukossa. Kiinan kokonaisnestepakkauskartonkimarkkinat kasvavat vuosittain 10,7 % ja ovat vuonna 2001 noin 100 000 tonnia.
Resumo:
Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.
Resumo:
The aim of this study was to identity metabolites and transformation products (TPs) in chicken muscle from amoxicillin (AMX), cephapirin (PIR) and ceftiofur (TIO), which are antibiotics of the β-lactam family. Liquid chromatography coupled to quadrupole time-of-flight (QqTOF) mass spectrometry was utilized due to its high resolution, high mass accuracy and MS/MS capacity for elemental composition determination and structural elucidation. Amoxicilloic acid (AMA) and amoxicillin diketopiperazine (DKP) were found as transformation products from AMX. Desacetylcephapirin (DAC) was detected as a metabolite of PIR. Desfuroylceftiofur (DFC) and its conjugated compound with cysteine (DFC-S-Cys) were detected as a result of TIO in contact with chicken muscle tissue. The metabolites and transformation products were also monitored during the in vivo AMX treatment and slaughtering period. It was found that two days were enough to eliminate AMX and associated metabolites/transformation products after the end of administration.
Resumo:
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.
Resumo:
We analyze the behavior of complex information in the Fresnel domain, taking into account the limited capability to display complex values of liquid crystal devices when they are used as holographic displays. To do this analysis we study the reconstruction of Fresnel holograms at several distances using the different parts of the complex distribution. We also use the information adjusted with a method that combines two configurations of the devices in an adding architecture. The results of the error analysis show different behavior for the reconstructions when using the different methods. Simulated and experimental results are presented.
Resumo:
The determination of gross alpha, gross beta and 226Ra activity in natural waters is useful in a wide range of environmental studies. Furthermore, gross alpha and gross beta parameters are included in international legislation on the quality of drinking water [Council Directive 98/83/EC].1 In this work, a low-background liquid scintillation counter (Wallac, Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and 226Ra activity in natural water samples. Sample preparation involved evaporation to remove 222Rn and its short-lived decay daughters. The evaporation process concentrated the sample ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model based on secular equilibrium conditions between 226Ra and its short-lived decay daughters is presented. The proposed model makes it possible to determine 226Ra activity from two measurements. These measurements also allow determining gross alpha and gross beta simultaneously. To validate the proposed model, spiked samples with different activity levels for each parameter were analysed. Additionally, to evaluate the model's applicability in natural water, eight natural water samples from different parts of Spain were analysed. The eight natural water samples were also characterised by alpha spectrometry for the naturally occurring isotopes of uranium (234U, 235U and 238U), radium (224Ra and 226Ra), 210Po and 232Th. The results for gross alpha and 226Ra activity were compared with alpha spectrometry characterization, and an acceptable concordance was obtained.
Resumo:
This review presents the evolution of steroid analytical techniques, including gas chromatography coupled to mass spectrometry (GC-MS), immunoassay (IA) and targeted liquid chromatography coupled to mass spectrometry (LC-MS), and it evaluates the potential of extended steroid profiles by a metabolomics-based approach, namely steroidomics. Steroids regulate essential biological functions including growth and reproduction, and perturbations of the steroid homeostasis can generate serious physiological issues; therefore, specific and sensitive methods have been developed to measure steroid concentrations. GC-MS measuring several steroids simultaneously was considered the first historical standard method for analysis. Steroids were then quantified by immunoassay, allowing a higher throughput; however, major drawbacks included the measurement of a single compound instead of a panel and cross-reactivity reactions. Targeted LC-MS methods with selected reaction monitoring (SRM) were then introduced for quantifying a small steroid subset without the problems of cross-reactivity. The next step was the integration of metabolomic approaches in the context of steroid analyses. As metabolomics tends to identify and quantify all the metabolites (i.e., the metabolome) in a specific system, appropriate strategies were proposed for discovering new biomarkers. Steroidomics, defined as the untargeted analysis of the steroid content in a sample, was implemented in several fields, including doping analysis, clinical studies, in vivo or in vitro toxicology assays, and more. This review discusses the current analytical methods for assessing steroid changes and compares them to steroidomics. Steroids, their pathways, their implications in diseases and the biological matrices in which they are analysed will first be described. Then, the different analytical strategies will be presented with a focus on their ability to obtain relevant information on the steroid pattern. The future technical requirements for improving steroid analysis will also be presented.
Resumo:
This work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap – high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation. Furthermore, the applicability of the on-line procedure was evaluated for 25 additional antibiotics, covering a wide range of chemical classes in different environmental waters with satisfactory quality parameters. Degradation rates obtained for Tc by laccase enzyme and ERY by EreB esterase enzyme without the presence of mediators were ∼78% and ∼50%, respectively. Concerning the identification of TPs, three suspected compounds for Tc and five of ERY have been proposed. In the case of Tc, the tentative molecular formulas with errors mass within 2 ppm have been based on the hypothesis of dehydroxylation, (bi)demethylation and oxidation of the rings A and C as major reactions. In contrast, the major TP detected for ERY has been identified as the “dehydration ERY-A”, with the same molecular formula of its parent compound. In addition, the evaluation of the antibiotic activity of the samples along the enzymatic treatments showed a decrease around 100% in both cases
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
This thesis focuses on fibre coalescers whose efficiency is based on the surface properties/characteristics. They have the ability to preferentially wet or interact with one or more of the fluids to be separated. Thus, the interfacial phenomena governing the separation efficiency of the coalescers is investigated depending on physical factors such as flowrates, phase ratios and coalescer packing density. Design of process equipment to produce and separate of the emulsions was carried out.The experimentation was carried out to test the separation efficiency of the coalescing medias, namely fibreglass, polyester I and polyester II. The performances of the coalescing medias were assessed via droplet size information. In conclusion, the objectives (design of process equipment and experimentation) were achieved. Fibre glass was the best coalescing media, next was polyester I and then finally polyester II. Droplets sizes increased with decreased flowrates and increased packing density of the coalescer. Phase ratio had effect on the droplet sizes of the feed but had no effect on the coalescence of droplets of the feed.
Resumo:
This article reports the phase behavior determi- nation of a system forming reverse liquid crystals and the formation of novel disperse systems in the two-phase region. The studied system is formed by water, cyclohexane, and Pluronic L-121, an amphiphilic block copolymer considered of special interest due to its aggregation and structural proper- ties. This system forms reverse cubic (I2) and reverse hexagonal (H2) phases at high polymer concentrations. These reverse phases are of particular interest since in the two-phase region, stable high internal phase reverse emulsions can be formed. The characterization of the I2 and H2 phases and of the derived gel emulsions was performed with small-angle X-ray scattering (SAXS) and rheometry, and the influence of temperature and water content was studied. TheH2 phase experimented a thermal transition to an I2 phase when temperature was increased, which presented an Fd3m structure. All samples showed a strong shear thinning behavior from low shear rates. The elasticmodulus (G0) in the I2 phase was around 1 order of magnitude higher than in theH2 phase. G0 was predominantly higher than the viscousmodulus (G00). In the gel emulsions,G0 was nearly frequency-independent, indicating their gel type nature. Contrarily to water-in-oil (W/O) normal emulsions, in W/I2 and W/H2 gel emulsions, G0, the complex viscosity (|η*|), and the yield stress (τ0) decreased with increasing water content, since the highly viscous microstructure of the con- tinuous phase was responsible for the high viscosity and elastic behavior of the emulsions, instead of the volumefraction of dispersed phase and droplet size. A rheological analysis, in which the cooperative flow theory, the soft glass rheology model, and the slip plane model were analyzed and compared, was performed to obtain one single model that could describe the non-Maxwellian behavior of both reverse phases and highly concentrated emulsions and to characterize their microstructure with the rheological properties.
Resumo:
Two high performance liquid chromatography (HPLC) methods for the quantitative determination of indinavir sulfate were tested, validated and statistically compared. Assays were carried out using as mobile phases mixtures of dibutylammonium phosphate buffer pH 6.5 and acetonitrile (55:45) at 1 mL/min or citrate buffer pH 5 and acetonitrile (60:40) at 1 mL/min, an octylsilane column (RP-8) and a UV spectrophotometric detector at 260 nm. Both methods showed good sensitivity, linearity, precision and accuracy. The statistical analysis using the t-student test for the determination of indinavir sulfate raw material and capsules indicated no statistically significant difference between the two methods.