949 resultados para linear stability analysis quantum dots crystal growth
Resumo:
A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation Of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 mu M; two detection ranges of glucose from 1.0 mu M to 0.5 mM and from 1.0 mM to 20 mM, respectively Were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.
Resumo:
Near infrared (NIR) light emitting diodes employing composites of an IR fluorescent dye, CdSe/CdScore/shell semiconductor quantum dots and poly( N-vinylcarbazole) (PVK) have been demonstrated. The device, with a configuration of indium-tin-oxide (ITO)//PEDOT:PSS//PVK:NIR Dye:CdSe/CdS//Al, had a turn-on voltage of 7 V, emitted the NIR light with a maximum at 890 nm and the irradiance intensity of 96 mu W. The electroluminescence efficiency of 0.02% was achieved at a current density of 13 mA cm(-2).
Resumo:
The crystalline syndiotatic 1,2-polybutadiene was synthesized with a catalyst consisting of iron acetylacetonate (Fe(acac)(3))-triisobutylaluminum (Al(i-Bu)(3))-diethyl phosphite (DEP), and the effects of crystal growth conditions on morphology of thin films of the polymer were investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The polymer with melting point 179 degreesC was found to have 89.3% 1,2-content and 86.5% syndiotacticity by C-13 NMR measurement. The results of electron microscopic studies indicate that the solution-cast thin films of the syndiotatic 1,2-polybutadiene consist of lath-like lamellae with the c-axis perpendicular to the film plane, while a- and b-axes are in the film plane. The morphology of isothermally crystallized thin films of the polymer is temperature dependent. At lower crystallization temperatures (130 degreesC), a spherulitic structure consisting of flat-on lamellae is formed. With an increase in the crystallization temperature (e.g., at 140 degreesC), the spherulites and single faceted crystals coexist. At higher crystallization temperatures (150 degreesC), single crystals with a hexagonal prismatic shape are produced.
Resumo:
Hybrid organic/inorganic white light-emitting diodes (LEDs) were fabricated of semiconductor polymer poly(N-vinylcarbazole) (PVK) doped with CdSe/CdS core-shell semiconductor quantum dots (QDs). The device, with a structure of indium-tin-oxide (ITO)vertical bar 3,4-polyethylene-dioxythiophene- polystyrene sulfonate (PEDOT:PSS)vertical bar PVK:CdSe/CdS vertical bar Al, emitted a pure white light spanning the whole visible region from 400 to 800 nm. The Commission Internationale del'Eclairage coordinates (CIE) remained at x = 0.33, y = 0.34 at wide applied voltages. The maximum brightness and electroluminescence (EL) efficiency reached 180 cd m(-2) at 19 V and 0.21 cd A(-1) at current density of 2 mA cm(-2), respectively. The realization of the pure white light emission is attributed to the incomplete energy and charge transfer from PVK to CdSe/CdS core-shell QDs.
Resumo:
The morphology of films of isotactic polypropylene poly (3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields has been investigated by using scanning electron microscope. The experiment results show that the micro-crystal morphology of polymer films was strongly dependent on electrostatic fields. It was found that the effect of the electrostatic field led to the formation of dendrite crystals aligned in the field direction, and some branches of P3DDT ruptured. However, the micro-crystals in these films grew into spherulites without electrostatic field,and have no crystal orientation.
Resumo:
Single crystals of KLnN(Ln=La, Ce, Pr, Nd, Sm) can be grown in water solution with pH approximate to 1 similar to 2 at about 40 degrees C. Crystals of KLnN (Ln=La, Ce, Pr, Nd) are orthorhombic with space group Fdd2. KPrN crystal was grwon and its crystal structure was determined for the first time. The KPrN crystal parameters obtained by the direct method are as follows: a=21.411(3) Angstrom, b=11.2210(10)Angstrom, c=12.208(2) Angstrom, Z=6, R=0.0240. The TG-DTA curves of KLnN(Ln=La,Ce, Pr, Nd, Sm) demonstrate that the processes of dehydration, melt, irreversible phase transition and decomposition of NO3- take place in sequence with the temperature increasing(except KCN). There are three steps in the decomposition of NO3- in KLnN(Ln=La, Nd, Sm) while two steps in KLnN (Ln=Ce, Pr). K(2)Ln(NO3)(5). 2H(2)O are formed at about 225 degrees C by the reaction of the starting materials of KNO3 and Ln(NO3)(3). nH(2)O.
Resumo:
Single crystal of KZnF3 : Eu3+ has been grown by means of Bridgman-Stockbarger technique in Ar atmosphere, The emission and excitation spectra of europium ion were measured, The results show that a small amount of Eu2+ exists in the crystal, The existence of Eu2+ ions was also confirmed by ESR data, The valence change of Eu ions during the crystal growth is due to unequivalent substitution of Eu3+ ions for the lattice ions. The sites possibly occupied by Eu ions in this crystal were also discussed.
Resumo:
Cp3Yb (Cp = C5H5) reacts with a-naphthol (HNP) in THF to form Cp2Yb(NP)(THF) (1), which crystallizes in the space group P2(1)/n with unit cell dimensions a = 8.084(2), b = 15.996(6), c = 15.973(7) angstrom, beta = 98.95(3), V = 2040.3 angstrom and D(calc.) = 1.69 g cm-3 for Z = 4. Least-squares refinement based on 2242 observed reflections converged to a final R value of 0.081. The average Yb-C(Cp) distance is 2.60(2) angstrom and Yb-O(THF) and Yb-O(NP) distances are 2.30(1) and 2.06(1) angstrom, respectively. The title compound loses the coordinated THF molecule readily by heating under vacuum to give dimeric [Cp2Yb(NP)]2 (2), which undergoes disproportionation to give Cp3Yb and Yb(NP)3 on heating above 230-degrees-C.
Resumo:
Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.
Resumo:
We study the problem of supervised linear dimensionality reduction, taking an information-theoretic viewpoint. The linear projection matrix is designed by maximizing the mutual information between the projected signal and the class label. By harnessing a recent theoretical result on the gradient of mutual information, the above optimization problem can be solved directly using gradient descent, without requiring simplification of the objective function. Theoretical analysis and empirical comparison are made between the proposed method and two closely related methods, and comparisons are also made with a method in which Rényi entropy is used to define the mutual information (in this case the gradient may be computed simply, under a special parameter setting). Relative to these alternative approaches, the proposed method achieves promising results on real datasets. Copyright 2012 by the author(s)/owner(s).
Resumo:
In this past decade finite volume (FV) methods have increasingly been used for the solution of solid mechanics problems. This contribution describes a cell vertex finite volume discretisation approach to the solution of geometrically nonlinear (GNL) problems. These problems, which may well have linear material properties, are subject to large deformation. This requires a distinct formulation, which is described in this paper together with the solution strategy for GNL problem. The competitive performance for this procedure against the conventional finite element (FE) formulation is illustrated for a three dimensional axially loaded column.
Resumo:
The effects of a constant uniform magnetic field on dendritic solidification were investigated using a 2-dimensional enthalpy based numerical model. The interaction between thermoelectic currents and the magnetic field generates a Lorentz force that creates a flow. This flow causes a change in the morphology of the dendrite; secondary growth is promoted on one side of the dendrite arm and the tip velocity of the primary arm is increased.
Resumo:
The effects of a constant uniform magnetic field on thermoelectric currents during dendritic solidification were investigated using an enthalpy based numerical model. It was found that the resulting Lorentz force generates a complex flow influencing the solidification pattern. Experimental work of material processing under high magnetic field conditions has shown that the microstructure can be significantly altered. There is evidence that these effects can be atrtributed to the Lorentz force created through the thermoelectric magentohydrodynamic interactions.[1,2] However the mechanism of how this occurs is not very well understood. In this paper, our aim is to investigate the flow field created from the Lorentz force and how this influences the morphology of dendritic growth for both pure materials and binary alloys.