797 resultados para learning classifier systems
Resumo:
The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
In this article, we propose a framework, namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling misclassified documents. Whenever a user points out misclassified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications. If the classifier fails to accept relevant documents or reject irrelevant documents on certain categories, then PLD will assign those documents as new positive/negative training instances. The classifier can then strengthen its weakness by learning from these new training instances. Our experiments’ results have demonstrated that the proposed algorithm can learn from user-identified misclassified documents, and then distil the rest successfully.
Resumo:
The design, development, and use of complex systems models raises a unique class of challenges and potential pitfalls, many of which are commonly recurring problems. Over time, researchers gain experience in this form of modeling, choosing algorithms, techniques, and frameworks that improve the quality, confidence level, and speed of development of their models. This increasing collective experience of complex systems modellers is a resource that should be captured. Fields such as software engineering and architecture have benefited from the development of generic solutions to recurring problems, called patterns. Using pattern development techniques from these fields, insights from communities such as learning and information processing, data mining, bioinformatics, and agent-based modeling can be identified and captured. Collections of such 'pattern languages' would allow knowledge gained through experience to be readily accessible to less-experienced practitioners and to other domains. This paper proposes a methodology for capturing the wisdom of computational modelers by introducing example visualization patterns, and a pattern classification system for analyzing the relationship between micro and macro behaviour in complex systems models. We anticipate that a new field of complex systems patterns will provide an invaluable resource for both practicing and future generations of modelers.
Resumo:
Teacher educators who advocate new learning approaches hope that their graduates will address the needs of digitally and globally sophisticated students. A critical, enquiry-based framework for teaching attempts to unravel many traditional assumptions about learning, assumptions which continue to shape preservice teachers’ practices even through early career years. Evidence in relation to effective take up of New Learning education approaches by graduates is sparse. This paper will explore how three teacher educators attempt to wrestle with ways New Learning frameworks can transform outmoded yet embedded views in beginning teachers. They ask: Can changed approaches be consolidated and mobilised against some of the adverse conditions that predominate in schools? And if this is possible, what support might be required for beginning teachers who are struggling to implement a change process
Resumo:
NASA is working on complex future missions that require cooperation between multiple satellites or rovers. To implement these systems, developers are proposing and using intelligent and autonomous systems. These autonomous missions are new to NASA, and the software development community is just learning to develop such systems. With these new systems, new verification and validation techniques must be used. Current techniques have been developed based on large monolithic systems. These techniques have worked well and reliably, but do not translate to the new autonomous systems that are highly parallel and nondeterministic.
Resumo:
Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. We describe an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset. with parameters that control the probability of movement by the agent given the constraints of the maze at some instant of time. In contrast to previous approaches, the agent represents a dynamic strategy for playing Pac-Man, rather than a pre-programmed maze-solving method. The agent adaptively "learns" through the application of population-based incremental learning (PBIL) to adjust the agents' parameters. Experimental results are presented that give insight into some of the complexities of the game, as well as highlighting the limitations and difficulties of the representation of the agent.
Resumo:
Increasingly, academic teachers are designing their own web sites to add value to or replace other forms of university teaching. These web sites are tangible and dynamic constructions that represent the teachers thinking and decisions derived from an implicit belief system about teaching and learning. The emphasis of this study is to explore the potential of the research techniques of concept-mapping and stimulated recall to locate the implicit pedagogies of academic teachers and investigate how they are enacted through the learning designs of their web sites. The rationale behind such an investigation is that once these implicit belief systems are made visible, then conversations can commence about how these beliefs are transformed into practice, providing a potent departure point for academic development.