962 resultados para laser-plasma acceleration, Gaussian pulse, motion of charged particle
Resumo:
The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earth's shadow is not considered, an analytical solution is obtained using Lagrange's method of variation of parameters. A semi-analytical procedure is proposed to predict the satellite's attitude under the influence of the earth's shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To assess the viability of the early diagnosis of fetal gender in material plasma before 7 weeks of pregnancy by real-time polymerase chain reaction (real-time PCR), starting at 5 weeks of pregnancy.Method peripheral blood was collected from pregnant women, starting at 5 weeks of gestation. After centrifugation, plasma was separated for fetal DNA extraction. DNA was analyzed by quantitative real-time PCR for two genomic regions, one on the Y chromosome (DYS-14) and the other shared by both sexes (beta-globin), by the TaqMan Minor Groove Binder (MGB) probe assay. The results of the examinations were compared to fetal gender determined after delivery.Results A total of 79 examinations of fetal DNA in maternal plasma were performed for 52 pregnant women. Accuracy according to gestational age was 92.6% (25 of 27 cases) at 5 weeks, and 95.6% (22 of 23 cases) at 6 weeks. These results also demonstrate that fetal DNA is present at low concentrations in maternal plasma at 5 weeks (8.5 genome equivalents (GE)/mL) and 6 weeks (34.1 GE/mL) of pregnancy.Conclusion Quantitative real-time PCR and TaqMan MGB probes specific for the detection of fetal gender in maternal plasma starting at 5 weeks of gestation have good sensitivity and excellent specificity. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Objective: In this paper we evaluated the effect of two fluoridated agents and Nd:YAG irradiation separately and in combination on dentine resistance to erosion. Background Data: The morphological changes in dentin induced by laser treatment may reduce the progression of erosive lesions. Due to the possibility of a synergistic effect of laser with fluoride, this study was conducted. Materials and Methods: Eighty bovine dentine samples (4 x 4 mm) were randomly divided into eight groups, according to the following treatments: G1: untreated (control); G2: acidic phosphate fluoride gel (APF 1.23%) for 4 min; G3: fluoride varnish (NaF 2.26%) for 6 h; G4: 0.5 W Nd: YAG laser (250 mu sec pulse, 10 Hz, 35 J/cm(2), 30 sec); G5: 0.75 W Nd: YAG laser (52.5 J/cm(2)); G6: 1.0 W Nd: YAG laser (70 J/cm(2)); G7: APF + 0.75 W Nd: YAG laser; and G8: NaF + 0.75 W Nd: YAG laser. After the treatments, half of each dentine surface was protected with nail varnish. The samples were stored in artificial saliva (30 mL/sample) for 24 h and submitted to four erosive 1-min cycles. Between the erosive attacks, the blocks were maintained in artificial saliva for 59 min. The erosive wear was evaluated by profilometry. Results: The mean wear (+/- SD, mu m) was: G1: 1.20 +/- 0.20; G2: 0.47 +/- 0.06; G3: 0.81 +/- 0.11; G4: 1.47 +/- 0.32; G5: 1.52 +/- 0.24; G6: 1.49 +/- 0.30; G7: 0.49 +/- 0.11; and G8: 1.06 +/- 0.31 (Tukey's test, p < 0.05). Conclusions: Laser irradiation was not able to reduce dentine erosion. However, fluoride application was able to increase the dentine's resistance to erosion, and APF showed better results than fluoride varnish.
Resumo:
The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 mu m) or Er:YAG (2.94 mu m) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, alpha = 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 x G2: p = 0.002; G3 x G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study was to investigate the histological changes that occur in rat soft and hard tissues after Er,Cr:YSGG laser surgery. Each of 20 rats was submitted to four procedures which were randomly distributed to the right and left sides of the animal: procedure 1 dorsal incision with a scalpel; procedure 2 dorsal incision with a 2.0-W Er,Cr:YSGG laser; procedure 3 skull defect created with a diamond bur; procedure 4 skull defect created with a 3.0-W Er,Cr:YSGG laser. The animals were killed 3, 7, 15 and 30 days after surgery, and histological examinations were performed. The histometric analysis of the bone defects was evaluated using an unpaired t-test. Initially, the dorsum showed more histological signs of repair following procedure 1, although similar healing responses following procedures 1 and 2 were seen on day 30 after surgery. By day 30 the bone formation observed following procedure 4 was much more evident than following procedure 3. The unpaired t-test identified significant differences in bone formation on day 30 (p = 0.01), whereas a greater bone percentage was seen following procedure 4 than following procedure 3 (79.96 +/- 10.30% and 58.23 +/- 9.99%, respectively). Thus, histological repair of the Er,Cr:YSGG laser wounds was similar to that of the scalpel wounds. However, skull defects created with the Er,Cr:YSGG laser showed greater bone formation than defects created with the bur. Within the limitations of this study, we can conclude that the Er,Cr:YSGG laser is a promising surgical instrument in vivo, particularly for bone surgery.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective this study was to evaluate in vitro the bond strength of two etch-and-rise and one self-etching adhesive system after dentin irradiation with Er:YAG (erbium: yttrium aluminum garnet) laser using microtensile test. The results revealed that the groups treated with laser Er:YAG presented less tensile bond strength, independently to the adhesive system used. The prompt L-pop adhesive presented less microtensile bond strength compared to the other adhesives evaluated. There was no difference between single bond and excite groups. The adhesive failures were predominant in all the experimental groups. The Er:YAG laser influenced negatively bond strength values of adhesive systems tested in dental substrate.
Resumo:
The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.