986 resultados para iron metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting metabolic rate was measured in 10 healthy volunteers (25 yr, 73 kg, 182 cm) for 1 h before and 4 h during intravenous (iv) fructose administration (20% at 50 mumol.kg-1.min-1) with (+P) or without (-P) propranolol (100 micrograms/kg, 1 microgram.kg-1.min-1) during the last 2 h. Some subjects were studied a further 2 h with fructose infusion and +P or -P in hyperinsulinemic (2.9 pmol.kg-1.min-1) euglycemic conditions. Glucose turnover ([3-3H]glucose, 20 muCi bolus and 0.2 muCi/min) was calculated over 30 min at 0, 2, 4, and 6 h. The thermic effect of iv fructose was approximately 7.5% and decreased to 4.9 +/- 0.4% (P less than 0.01) +P. During the euglycemic clamp the thermic effect was 6.2 +/- 0.9% (-P) and 5.3 +/- 0.9% (+P). Hepatic glucose production (HGP) was 11.7 mumol.kg-1.min-1 (0 h) and did not change after 2 h iv fructose (11.8 +/- 0.5 and 9.8 +/- 0.6 mumol.kg-1.min-1 -P and +P, respectively) but increased to 13.8 +/- 0.9 (-P) and 12.9 +/- 0.8 mumol.kg-1.min-1 (+P) (P less than 0.01) after 4 h. HGP was suppressed to varying degrees during the euglycemic clamp. It is concluded that 1) the greater thermic effect of fructose compared with glucose is probably due to continued gluconeogenesis (which is suppressed by glucose or glucose-insulin) and the energy cost of fructose metabolism to glucose in the liver. 2) There is a sympathetically mediated component to the thermic effect of fructose (approximately 30%) that is not mediated by elevated plasma insulin concentrations similar to those observed with iv glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rietveld profile‐analysis method is used to investigate the x‐ray diffraction pattern of lithiated Fe3O4. It is shown that, after exposure to air, pure magnetite coexists with a lithium‐inserted LixFe3O4 phase. The Mössbauer spectra at 300 and 4.2 K have been used to estimate the lithium content of the sample, the pure magnetite concentration, and the iron distribution over the available 16c and 16d sites of the spinel structure. Magnetization measurements from 4.2 to 120 K with an external magnetic field up to 150 kOe have been used to obtain the saturation magnetic moment, the magnetic anisotropy constants, and the susceptibility. It is concluded that a noncollinear spin structure should be present in Li0.5Fe3O4. These results indicate that there is no room‐temperature extrusion of iron even for x→2.0, but that on exposure to air LixFe3O4 samples with x>0.5 are oxidized at room temperature by delithiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylmalonyl-CoA mutase (MCM) and propionyl-CoA carboxylase (PCC) are the key enzymes of the catabolic pathway of propionate metabolism and are mainly expressed in liver, kidney and heart. Deficiency of these enzymes leads to two classical organic acidurias: methylmalonic and propionic aciduria. Patients with these diseases suffer from a whole spectrum of neurological manifestations that are limiting their quality of life. Current treatment does not seem to effectively prevent neurological deterioration and pathophysiological mechanisms are poorly understood. In this article we show evidence for the expression of the catabolic pathway of propionate metabolism in the developing and adult rat CNS. Both, MCM and PCC enzymes are co-expressed in neurons and found in all regions of the CNS. Disease-specific metabolites such as methylmalonate, propionyl-CoA and 2-methylcitrate could thus be formed autonomously in the CNS and contribute to the pathophysiological mechanisms of neurotoxicity. In rat embryos (E15.5 and E18.5), MCM and PCC show a much higher expression level in the entire CNS than in the liver, suggesting a different, but important function of this pathway during brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen is a hallmark of mature astrocytes, but its emergence during astrocytic differentiation is unclear. Differentiation of E14 mouse neurospheres into astrocytes was induced with fetal bovine serum (FBS), Leukemia Inhibitory Factor (LIF), or Ciliary Neurotrophic Factor (CNTF). Cytochemical and enzymatic analyses showed that glycogen is present in FBS- or LIF- but not in CNTF-differentiated astrocytes. Glycogenolysis was induced in FBS- and LIF-differentiated astrocytes but glycogen resynthesis was observed only with FBS. Protein targeting to glycogen mRNA expression appeared with glial fibrillary acidic protein and S100beta in FBS and LIF conditions but not with CNTF. These results show that glycogen metabolism constitutes a useful marker of astrocyte differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capital intensive industries in specialized niches of production have constituted solid ground for family firms in Spain , as evidenced by the experience of the iron and steel wire industries between 1870 and 2000. The embeddedness of these firms in their local and regional environments have allowed the creation of networks that, together with favourable institutional conditions, significantly explain the dominance of family entrepreneurship in iron and steel wire manufacturing in Spain, until the end of the 20 th century. Dominance of family firms at the regional level has not been not an obstacle for innovation in wire manufacturing in Spain, which has taken place even when institutional conditions blocked innovation and traditional networking. Therefore, economic theories about the difficulties dynastic family firms may have to perform appropriately in science-based industries must be questioned

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY: Iron deficiency with or without anaemia is the most common deficiency in the world. Its prevalence is higher in developing countries and in low socioeconomic populations. We aimed at determining and comparing the prevalence of iron deficiency in an immigrant and non-immigrant population. METHODS: Every child scheduled for a routine check-up at 12 months of age was allowed to participate in the study. Haemoglobin, ferritin, anthropometric data, familial and nutritional status were measured. RESULTS: 586 infants were eligible and 463 were included in the study as they had assessment data at 12 months. Children were divided into two groups: immigrants' children and non-immigrants' children. The global prevalence of iron deficiency was 5.7% at 12 months. A significant difference for iron deficiency was noticed between the groups at 12 months (p = 0.01). Among risk factors, immigration (odds ratio 2.91; 95% CI 1.05-8.04) and unemployment (odds ratio 6.08; 95% CI 1.18-31.30) had the higher odds in the multivariable analysis. CONCLUSION: The prevalence of iron deficiency in the immigrant population is higher than in non-immigrants. Immigration and the category of employment are risk factors for iron deficiency, as starting baby cereals before 9 months is a protective factor. Good socioeconomic conditions in Switzerland, the quality of food for pregnant women and young infants may be the explanation. A study up to five years of age is necessary before drawing general conclusions on infancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Animal model studies have shown that the colon tumour promoting effect of dietary fat depends not only on the amount but on its fatty acid composition. With respect to this, the effect of n9 fatty acids, present in olive oil, on colon carcinogenesis has been scarcely investigated. AIMS To assess the effect of an n9 fat diet on precancer events, carcinoma development, and changes in mucosal fatty acid composition and prostaglandin (PG)E2 formation in male Sprague-Dawley rats with azoxymethane induced colon cancer. METHODS Rats were divided into three groups to receive isocaloric diets (5% of the energy as fat) rich in n9, n3, or n6 fat, and were administered azoxymethane subcutaneously once a week for 11 weeks at a dose rate of 7.4 mg/kg body weight. Vehicle treated groups received an equal volume of normal saline. Groups of animals were colectomised at weeks 12 and 19 after the first dose of azoxymethane or saline. Mucosal fatty acids were assessed at 12 and 19 weeks. Aberrant crypt foci and the in vivo intracolonic release of PGE2 were assessed at week 12, and tumour formation at week 19. RESULTS Rats on the n6 diet were found to have colonic aberrant crypt foci and adenocarcinomas more often than those consuming either the n9 or n3 diet. There were no differences between the rats on the n9 and n3 diets. On the other hand, administration of both n9 and n3 diets was associated with a decrease in mucosal arachidonate concentrations as compared with the n6 diet. Carcinogen treatment induced an appreciable increase in PGE2 formation in rats fed the n6 diet, but not in those fed the n3 and n9 diets. CONCLUSIONS Dietary olive oil prevented the development of aberrant crypt foci and colon carcinomas in rats, suggesting that olive oil may have chemopreventive activity against colon carcinogenesis. These effects may be partly due to modulation of arachidonic acid metabolism and local PGE2synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiponutrin (PNPLA3) is a predominantly liver-expressed transmembrane protein with phospholipase activity that is regulated by fasting and feeding. Recent genome-wide association studies identified PNPLA3 to be associated with hepatic fat content and liver function, thus pointing to a possible involvement in the hepatic lipoprotein metabolism. The aim of this study was to examine the association between two common variants in the adiponutrin gene and parameters of lipoprotein metabolism in 23,274 participants from eight independent West-Eurasian study populations including six population-based studies [Bruneck (n = 800), KORA S3/F3 (n = 1644), KORA S4/F4 (n = 1814), CoLaus (n = 5435), SHIP (n = 4012), Rotterdam (n = 5967)], the SAPHIR Study as a healthy working population (n = 1738) and the Utah Obesity Case-Control Study including a group of 1037 severely obese individuals (average BMI 46 kg/m2) and 827 controls from the same geographical region of Utah. We observed a strong additive association of a common non-synonymous variant within adiponutrin (rs738409) with age-, gender-, and alanine-aminotransferase-adjusted lipoprotein concentrations: each copy of the minor allele decreased levels of total cholesterol on average by 2.43 mg/dl (P = 8.87 x 10(-7)), non-HDL cholesterol levels by 2.35 mg/dl (P = 2.27 x 10(-6)) and LDL cholesterol levels by 1.48 mg/dl (P = 7.99 x 10(-4)). These associations remained significant after correction for multiple testing. We did not observe clear evidence for associations with HDL cholesterol or triglyceride concentrations. In conclusion, our study suggests that adiponutrin is involved in the metabolism of apoB-containing lipoproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NPs) are under development for imaging and drug delivery; however, their interaction with human blood-brain barrier models is not known. Materials & Methods: The uptake, reactive oxygen species production and transport of USPIO-NPs across human brain-derived endothelial cells as models of the blood-brain tumor barrier were evaluated for either uncoated, oleic acid-coated or polyvinylamine-coated USPIO-NPs. Results: Reactive oxygen species production was observed for oleic acid-coated and polyvinylamine-coated USPIO-NPs. The uptake and intracellular localization of the iron oxide core of the USPIO-NPs was confirmed by transmission electron microscopy. However, while the uptake of these USPIO-NPs by cells was observed, they were neither released by nor transported across these cells even in the presence of an external dynamic magnetic field. Conclusion: USPIO-NP-loaded filopodia were observed to invade the polyester membrane, suggesting that they can be transported by migrating angiogenic brain-derived endothelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13) C incorporation into brain metabolites by dynamic (13) C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13) C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. We performed (13) C NMR spectroscopy in vivo at high magnetic field (14.1 T) upon administration of [1,6-(13) C]glucose. This allowed to measure (13) C incorporation into the three aliphatic carbons of GABA in the rat brain, in addition to those of glutamate, glutamine and aspartate. These data were then modelled to determine fluxes of energy metabolism in GABAergic and glutamatergic neurons and glial cells.