883 resultados para image motion analysis
Resumo:
INTRODUCTION Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semiconstrained growing rods (Medtronic, Sofamor, Danek, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard "constrained / rigid" rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into a 7 level thoracolumbar multi-segment unit (MSU), removing all non-ligamentous soft tissues and leaving 3cm of ribs either side. Pure nondestructive axial rotation moments of ±4Nm at a constant rotation rate of 8deg.s-1 were applied to the mounted MSU spines using a biaxial Instron testing machine. Displacement of each vertebral level was captured using a 3D motion tracking system (Optotrak 3020, Northern Digital Inc, Waterloo, ON). Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and rigid rods in alternating sequence. The rods were secured by multi-axial pedicle screws (Medtronic CD Horizon) at levels 2 and 6 of the construct. The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm.deg-1) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of the order of testing, rigid rods significantly reduced the total ROM compared with semi-constrained rods (p<0.05) with in a significantly stiffer spine for both left and right axial rotation (p<0.05). Analysing the intervertebral motion within the instrumented levels 2-6, rigid rods showed reduced ROM compared with semi-constrained growing rods and compared with un-instrumented motion segments. CONCLUSION Semi-constrained growing rods maintain similar stiffness in axial rotation to un-instrumented spines, while dual rigid rods significantly reduce axial rotation. Clinically the effect of semi-constrained growing rods as observed in this study is that they would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine, which may reduce occurrence of the crankshaft phenomenon.
Resumo:
INTRODUCTION Managing spinal deformities in young children is challenging, particularly early-onset scoliosis (EOS). Any progressive spinal deformity particularly in early life presents significant health risks for the child and a challenge for the treating surgeon. Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option particularly for EOS is fusionless scoliosis surgery. Similar to bracing this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods is one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into 7 level thoracolumbar multi-segment unit (MSU) spines, removing all non-ligamentous soft tissues. Appropriately sized semi-constrained growing rods and rigid rods were secured by multi-axial screws (Medtronic) prior to testing in alternating sequences for each spine. Pure nondestructive moments of +/4Nm at a constant rotation rate of 8deg/s was applied to the mounted MSU spines. Displacement of each level was captured using an Optotrak (Northern Digital Inc, Waterloo, ON). The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm/deg) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of sequence order rigid rods significantly reduced the total ROM (deg) than compared to semi-constrained rods (p<0.05) and resulted in a significantly stiffer (Nm/deg) spine for both left and right axial rotation testing (p<0.05). Analysing the intervertebral motion within the instrumented levels, rigid rods showed reduced ROM (Deg) than compared to semi-constrained growing rods and the un-instrumented (UN-IN) test sequences. CONCLUSION The semi-constrained growing rods maintained rotation similar to UN-IN spines while the rigid rods showed significantly reduced axial rotation across all instrumented levels. Clinically the effect of semi-constrained growing rods evaluated in this study is that they will allow growth via the telescopic rod components while maintaining the axial rotation ability of the spine, which may also reduce the occurrence of the crankshaft phenomenon.
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
State and local governments frequently look to flagship cultural projects to improve the city image and catalyze tourism but, in the process, often overlook their potential to foster local arts development. To better understand this role, the article examines if and how cultural institutions in Los Angeles and San Francisco attract and support arts-related activity. The analysis reveals that cultural flagships have mixed success in generating arts-based development and that their ability may be improved through attention to the local context, facility and institutional characteristics, and the approach of the sponsoring agencies. Such knowledge is useful for planners to enhance their revitalization efforts, particularly as the economic development potential of arts organizations and artists has become more apparent.
Resumo:
Dealing with digital medical images is raising many new security problems with legal and ethical complexities for local archiving and distant medical services. These include image retention and fraud, distrust and invasion of privacy. This project was a significant step forward in developing a complete framework for systematically designing, analyzing, and applying digital watermarking, with a particular focus on medical image security. A formal generic watermarking model, three new attack models, and an efficient watermarking technique for medical images were developed. These outcomes contribute to standardizing future research in formal modeling and complete security and computational analysis of watermarking schemes.
Resumo:
Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.
Resumo:
Corporate social responsibility is imperative for manufacturing companies to achieve sustainable development. Under a strong environmental information disclosure system, polluting companies are disadvantaged in terms of market competitiveness, because they lack an environmentally friendly image. The objective of this study is to analyze productive inefficiency change in relation to toxic chemical substance emissions for the United States and Japan and their corresponding policies. We apply the weighted Russell directional distance model to measure companies productive inefficiency, which represents their production technology. The data encompass 330 US manufacturing firms observed from 1999 to 2007, and 466 Japanese manufacturing firms observed from 2001 to 2008. The article focuses on nine high-pollution industries (rubber and plastics; chemicals and allied products; paper and pulp; steel and non-ferrous metal; fabricated metal; industrial machinery; electrical products; transportation equipment; precision instruments) categorized into two industry groups: basic materials industries and processing and assembly industries. The results show that productive inefficiency decreased in all industrial sectors in the United States and Japan from 2001 to 2007. In particular, that of the electrical products industry decreased rapidly after 2002 for both countries, possibly because of the enforcement of strict environmental regulations for electrical products exported to European markets.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.
Resumo:
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results of the analysis revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.
Resumo:
Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic Sofamor Danek Memphis, TN, USA) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. This study found that semi-constrained growing rods would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine and the improved capacity for final correction.
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
Introduction The provision of a written comment on traumatic abnormalities of the musculoskeletal system detected by radiographers can assist referrers and may improve patient management, but the practice has not been widely adopted outside the United Kingdom. The purpose of this study was to investigate Australian radiographers’ perceptions of their readiness for practice in a radiographer commenting system and their educational preferences in relation to two different delivery formats of image interpretation education, intensive and non-intensive. Methods A cross-sectional web-based questionnaire was implemented between August and September 2012. Participants included radiographers with experience working in emergency settings at four Australian metropolitan hospitals. Conventional descriptive statistics, frequency histograms, and thematic analysis were undertaken. A Wilcoxon signed-rank test examined whether a difference in preference ratings between intensive and non-intensive education delivery was evident. Results The questionnaire was completed by 73 radiographers (68% response rate). Radiographers reported higher confidence and self-perceived accuracy to detect traumatic abnormalities than to describe traumatic abnormalities of the musculoskeletal system. Radiographers frequently reported high desirability ratings for both the intensive and the non-intensive education delivery, no difference in desirability ratings for these two formats was evident (z = 1.66,P = 0.11). Conclusions Some Australian radiographers perceive they are not ready to practise in a frontline radiographer commenting system. Overall, radiographers indicated mixed preferences for image interpretation education delivered via intensive and non-intensive formats. Further research, preferably randomised trials, investigating the effectiveness of intensive and non-intensive education formats of image interpretation education for radiographers is warranted.