911 resultados para high pressure electrochemical cell
Resumo:
The promise of metabonomics, a new "omics" technique, to validate Chinese medicines and the compatibility of Chinese formulas has been appreciated. The present study was undertaken to explore the excretion pattern of low molecular mass metabolites in the male Wistar-derived rat model of kidney yin deficiency induced with thyroxine and reserpine as well as the therapeutic effect of Liu Wei Di Huang Wan (LW) and its separated prescriptions, a classic traditional Chinese medicine formula for treating kidney yin deficiency in China. The study utilized ultra-performance liquid chromatography/electrospray ionization synapt high definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) in both negative and positive electrospray ionization (ESI). At the same time, blood biochemistry was examined to identify specific changes in the kidney yin deficiency. Distinct changes in the pattern of metabolites, as a result of daily administration of thyroxine and reserpine, were observed by UPLC-HDMS combined with a principal component analysis (PCA). The changes in metabolic profiling were restored to their baseline values after treatment with LW according to the PCA score plots. Altogether, the current metabonomic approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) indicated 20 ions (14 in the negative mode, 8 in the positive mode, and 2 in both) as "differentiating metabolites".
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
AIM: Zhi Zhu Wan (ZZW) is a classical Chinese medical formulation used for the treatment of functional dyspepsia that attributed to Spleen-deficiency Syndrome. ZZW contains Atractylodes Rhizome and Fructus Citrus Immaturus, the later originates from both Citrus aurantium L. (BZZW) and Citrus sinensis Osbeck (RZZW). The present study is designed to elucidate disparities in the clinical efficacy of two ZZW varieties based on the pharmacokinetics of naringenin and hesperetin. MEHTOD: After oral administration of ZZWs, blood sample was collected from healthy volunteers at designed time points. Naringenin and hesperetin were detected in plasma by RP-HPLC, pharmacokinetic parameters were processed using mode-independent methods with WINNONLIN. RESULTS: After oral administration of BZZW, both naringenin and hesperetin were detected in plasma, and demonstrated similar pharmacokinetic parameters. Ka was 0.384+/-0.165 and 0.401+/-0.159, T(1/2(ke))(h) was 5.491+/-3.926 and 5.824+/-3.067, the AUC (mg/Lh) was 34.886+/-22.199 and 39.407+/-19.535 for naringenin and hesperetin, respectively. However, in the case of RZZW, only hesperetin was found in plasma, but the pharmacokinetic properties for hesperetin in RZZW was different from that in BZZW. T(max) for hesperetin in RZZW is about 8.515h, and its C(max) is much larger than that of BZZW. Moreover, it was eliminated slowly as it possessed a much larger AUC value. CONCLUSION: The distinct therapeutic orientations of the Chinese medical formula ZZWs with different Fructus Citrus Immaturus could be elucidated based on the pharmacokinetic parameters of constituents after oral administration.
Resumo:
High-performance liquid chromatography coupled with solid phase extraction method was developed for determination of isofraxidin in rat plasma after oral administration of Acanthopanax senticosus extract (ASE), and pharmacokinetic parameters of isofraxidin either in ASE or pure compound were measured. The HPLC analysis was performed on a Dikma Diamonsil RP(18) column (4.6 mm x 150 mm, 5 microm) with the isocratic elution of solvent A (acetonitrile) and solvent B (0.1% aqueous phosphoric acid, v/v) (A : B = 22 : 78) and the detection wavelength was set at 343 nm. The calibration curve was linear over the range of 0.156-15.625 microg/ml. The limit of detection was 60 ng/ml. The intra-day precision was 5.8%, and the inter-day precision was 6.0%. The recovery was 87.30+/-1.73%. When the dosage of ASE is equal to pure compound caculated by the amount of isofraxidin, it has been found to have two maximum concentrations in plasma while the pure compound only showed one peak in the plasma concentration-time curve. The determined content of isofraxidin in plasma after oral administration of ASE is the total contents of free isofraxidin and its precursors in ASE in vitro. The pharmacokinetic characteristics of ASE showed the priority of the extract and the properities of traditional Chinese medicine.
Resumo:
A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.
Resumo:
A UPLC/Q-TOF-MS/MS method for analyzing the constituents in rat plasma after oral administration of Yin Chen Hao Tang (YCHT), a traditional Chinese medical formula, has been established. The UPLC/MS fingerprints of the samples were established first in vitro and in vivo, with 45 compounds in YCHT and 21 compounds in rat plasma after oral administration of YCHT were detected. Of the 45 detected compounds in vitro, 30 were identified, and all of the 21 compounds detected in rat plasma were identified either by comparing the retention time and mass spectrometry data with that of reference compounds or by mass spectrometry analysis and retrieving the reference literatures. Of the identified 21 compounds in rat plasma, 19 were the original form of compounds absorbed from the 45 detected compounds in vitro, 2 were the metabolites of the compounds existed in YCHT. It is concluded that a rapid and validated method has been developed based on UPLC-MS/MS, which shows high sensitivity and resolution that is more suitable for identifying the bioactive constituents in plasma after oral administration of Chinese herbal medicines, and provides helpful chemical information for further pharmacology and active mechanism research on the Chinese medical formula.
Resumo:
An HPLC with SPE method has been developed for analysis of constituents in rat blood after oral administration of the extract of Acanthopanax senticosus (ASE). The plasma sample was prepared by SPE method equipped with Oasis HLB cartridge (3cc, 60 mg). The analysis was performed on a Dikma Diamonsil RP(18) column (4.6 mmx150 mm, 5 microm) with the gradient elution of solvent A (ACN) and solvent B (0.1% aqueous phosphoric acid, v/v) and the detection wavelength was set at 270 nm. The calibration curve was linear over the range of 0.156-15.625 microg/mL. The LOD was 60 ng/mL. The intraday precision was less than 5.80%, and the interday precision was less than 6.0%. The recovery was (87.30 +/- 1.73)%. As a result, 19 constituents were detected in rat plasma after oral administration of the ASE, including 11 original compounds in ASE and eight metabolites, and three of the metabolites originated from syringin in ASE. Six constituents were identified by comparing with the corresponding reference compounds.
Resumo:
Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Resumo:
This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma–liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.
Resumo:
Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.
Resumo:
An International Society of Sugar Cane Technologists (ISSCT) Engineering Workshop was held in Piracicaba, Brazil from 30 June to 4 July 2008. The theme of the workshop was Design, manufacturing and maintenance of sugar mill equipment. The workshop consisted of a series of technical sessions and site visits. The Brazilian sugar industry is growing rapidly. The growth has occurred as the result of the sugar industry’s position as a key provider of renewable energy in the form of ethanol and, more recently, electricity. The increased focus on electricity is seeing investment in high pressure (100 bar) boilers, cane cleaning plants that allow an increased biomass supply from trash and digesters that produce biogas from dunder. It is clear that the Brazilian sugar industry has a well defined place in the country’s future. The ISSCT workshop provided a good opportunity to gain information from equipment suppliers and discuss new technology that may have application in Australia. The new technologies of interest included IMCO sintered carbide shredder hammer tips, Fives Cail MillMax mills, planetary mill gearboxes, Bosch Projects chainless diffusers, Fives Cail Zuka centrifugals and Vaperma Siftek membrane systems.
Resumo:
High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.