947 resultados para grating targets
Resumo:
Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron.
Resumo:
Viral hepatitis B and C, structurally two completely different viruses, commonly infect human hepatocytes and cause similar clinical manifestations. Since their discovery, IFN has been a pillar in the treatment. However, because of the different natures of the viruses, therapeutic approaches diverge and new treatment targets are tailored specifically for each virus. Herein, the authors analyse therapeutic approaches for hepatitis B virus (HBV) and hepatitis C virus (HCV) and focus on emerging concepts that are under clinical evaluation. In particular, promising viral inhibitors for HBV and HCV are reviewed and the current status of research for gene therapy for HCV is described. Immune therapy is a fast-moving field with fascinating results which include therapeutic vaccines and toll-like receptor agonists that could improve tomorrow's treatment approaches.
Resumo:
Colorectal cancer is the second leading cause of cancer death in Switzerland. The nihilism that dominated the treatment of these patients for decades has been replaced by a measure of enthusiasm, given recent therapeutic advances. New anticancer drugs such as irinotecan and oxaliplatin have changed the standard chemotherapy treatment of metastatic colorectal cancer. However, the real hype has come from molecular targeted therapy. Identification of cellular processes characteristic of colon cancer has permitted therapeutic targeting with favorable therapeutic index. Inhibition of the epidermal growth factor receptor in the clinic has provided proof of principle that interruption of signal transduction cascades in patients has therapeutic potential. Angiogenesis, especially the vascular endothelial growth factor pathway, has been proven to be another highly successful molecular target. In this article, we will review molecular targets, which are under active clinical investigation in colon cancer.
Resumo:
We present experimental results on the intracavity generation of radially polarized light by incorporation of a polarization-selective mirror in a CO2 -laser resonator. The selectivity is achieved with a simple binary dielectric diffraction grating etched in the backsurface of the mirror substrate. Very high polarization selectivity was achieved, and good agreement of simulation and experimental results is shown. The overall radial polarization purity of the generated laser beam was found to be higher than 90% .
Resumo:
Chronic renal allograft rejection is characterized by alterations in the extracellular matrix compartment and in the proliferation of various cell types. These features are controlled, in part by the metzincin superfamily of metallo-endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase (ADAM) and meprin. Therefore, we investigated the regulation of metzincins in the established Fisher to Lewis rat kidney transplant model. Studies were performed using frozen homogenates and paraffin sections of rat kidneys at day 0 (healthy controls) and during periods of chronic rejection at day +60 and day +100 following transplantation. The messenger RNA (mRNA) expression was examined by Affymetrix Rat Expression Array 230A GeneChip and by real-time Taqman polymerase chain reaction analyses. Protein expression was studied by zymography, Western blot analyses, and immunohistology. mRNA levels of MMPs (MMP-2/-11/-12/-14), of their inhibitors (tissue inhibitors of metalloproteinase (TIMP)-1/-2), ADAM-17 and transforming growth factor (TGF)-beta1 significantly increased during chronic renal allograft rejection. MMP-2 activity and immunohistological staining were augmented accordingly. The most important mRNA elevation was observed in the case of MMP-12. As expected, Western blot analyses also demonstrated increased production of MMP-12, MMP-14, and TIMP-2 (in the latter two cases as individual proteins and as complexes). In contrast, mRNA levels of MMP-9/-24 and meprin alpha/beta had decreased. Accordingly, MMP-9 protein levels and meprin alpha/beta synthesis and activity were downregulated significantly. Members of metzincin families (MMP, ADAM, and meprin) and of TIMPs are differentially regulated in chronic renal allograft rejection. Thus, an altered pattern of metzincins may represent novel diagnostic markers and possibly may provide novel targets for future therapeutic interventions.
Resumo:
Platelets have important roles in atherosclerosis and thrombosis and their inhibition reduces the risk of these disorders. There is still a need for platelet inhibitors affecting pathways that reduce thrombosis and atherosclerosis while leaving normal hemostasis relatively unaffected, thus reducing possible bleeding complications. Although combinations show progress in achieving these goals none of the present inhibitors completely fulfill these requirements. Collagen receptors offer attractive possibilities as alternative targets at early stages in platelet activation. Three major collagen receptors are assessed in this review; the alpha2beta1 integrin, responsible primarily for platelet adhesion to collagen; GPVI, the major signaling receptor for collagen; and GPIb-V-IX, which is indirectly a collagen receptor via von Willebrand factor. Several thrombosis models and experimental approaches suggest that all three are interesting targets and merit further investigation.
Resumo:
Type III protein secretion has been shown recently to be important in the virulence of the fish pathogen Aeromonas salmonicida. The ADP-ribosylating toxin Aeromonas exoenzyme T (AexT) is one effector protein targeted for secretion via this system. In this study, we identified muscular and nonmuscular actin as substrates of the ADP-ribosylating activity of AexT. Furthermore, we show that AexT also functions as a GTPase-activating protein (GAP), displaying GAP activity against monomeric GTPases of the Rho family, specifically Rho, Rac, and Cdc42. Transfection of fish cells with wild type AexT resulted in depolymerization of the actin cytoskeleton and cell rounding. Point mutations within either the GAP or the ADP-ribosylating active sites of AexT (Arg-143 as well as Glu-398 and Glu-401, respectively) abolished enzymatic activity, yet did not prevent actin filament depolymerization. However, inactivation of the two catalytic sites simultaneously did. These results suggest that both the GAP and ADP-ribosylating domains of AexT contribute to its biological activity. This is the first bacterial virulence factor to be described that has a specific actin ADP-ribosylation activity and GAP activity toward Rho, Rac, and Cdc42, both enzymatic activities contributing to actin filament depolymerization.
Resumo:
BACKGROUND AND OBJECTIVES: Data suggest that atorvastatin may be nephroprotective. This subanalysis of the Treating to New Targets study investigated how intensive lipid lowering with 80 mg of atorvastatin affects renal function when compared with 10 mg in patients with coronary heart disease. DESIGN, SETTING, PARTICIPANTS, ; MEASUREMENTS: A total of 10,001 patients with coronary heart disease and LDL cholesterol levels of <130 mg/dl were randomly assigned to double-blind therapy with 10 or 80 mg/d atorvastatin. Estimated GFR using the Modification of Diet in Renal Disease equation was compared at baseline and at the end of follow-up in 9656 participants with complete renal data. RESULTS: Mean estimated GFR at baseline was 65.6 +/- 11.4 ml/min per 1.73 m2 in the 10-mg group and 65.0 +/- 11.2 ml/min per 1.73 m2 in the 80-mg group. At the end of follow-up (median time to final creatinine measurement 59.5 months), mean change in estimated GFR showed an increase of 3.5 +/- 0.14 ml/min per 1.73 m2 with 10 mg and 5.2 +/- 0.14 ml/min per 1.73 m2 with 80 mg (P < 0.0001 for treatment difference). In the 80-mg arm, estimated GFR improved to > or = 60 ml/min per 1.73 m2 in significantly more patients and declined to < 60 ml/min per 1.73 m2 in significantly fewer patients than in the 10-mg arm. CONCLUSIONS: The expected 5-yr decline in renal function was not observed. Estimated GFR improved in both treatment groups but was significantly greater with 80 mg than with 10 mg, suggesting this benefit may be dosage related.