913 resultados para global strategic networks of linkages
Resumo:
Both dynamic and fed-batch systems have been used for the study of biofilms. Dynamic systems, whose hallmark is the presence of continuous flow, have been considered the most appropriate for the study of the last stage of the biofilm lifecycle: biofilm disassembly. However, fed-batch is still the most used system in the biofilm research field. Hence, we have used a fed-batch system to collect cells released from Staphylococcus epidermidis biofilms, one of the most important etiological agents of medical device-associated biofilm infections. Herein, we showed that using this model it was possible to collect cells released from biofilms formed by 12 different S. epidermidis clinical and commensal isolates. In addition, our data indicated that biofilm disassembly occurred by both passive and active mechanisms, although the last occurred to a lesser extent. Moreover, it was observed that S. epidermidis biofilm-released cells presented higher tolerance to vancomycin and tetracycline, as well as a particular gene expression phenotype when compared with either biofilm or planktonic cells. Using this model, biofilm-released cells phenotype and their interaction with the host immune system could be studied in more detail, which could help providing significant insights into the pathophysiology of biofilm-related infections.
Resumo:
Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000sodium sulfate0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solutesolvent interactions. The results obtained in the study show that solutesolvent interactions of nonionic organic compounds and proteins in polyethylene glycolsodium sulfate aqueous two-phase system change in the presence of NaCl additive.
Resumo:
Strategic funding of UID/BIO/04469/2013 unit and project ref RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124-FEDER-027462) and Xanel Vecino post-doctoral grant (ref SFRH/BPD/101476/2014) funded by Fundação para a Ciência e a Tecnologia, Portugal
Resumo:
Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.
Resumo:
Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.
Resumo:
The preclinical development of nanomedicines raises several challenges and requires a comprehensive characterization. Among them is the evaluation of the biodistribution following systemic administration. In previous work, the biocompatibility and in vitro targeting ability of a glycol chitosan (GC) based nanogel have been validated. In the present study, its biodistribution in the mice is assessed, using near-infrared (NIR) fluorescence imaging as a tool to track the nanogel over time, after intravenous administration. Rapid whole body biodistribution of both Cy5.5 labeled GC nanogel and free polymer is found at early times. It remains widespreadly distributed in the body at least up to 6 h postinjection and its concentration then decreases drastically after 24 h. Nanogel blood circulation half-life lies around 2 h with the free linear GC polymer presenting lower blood clearance rate. After 24 h, the blood NIR fluorescence intensity associated with both samples decreases to insignificant values. NIR imaging of the organs shows that the nanogel had a body clearance time of 48 h, because at this time point a weak signal of NIR fluorescence is observed only in the kidneys. Hereupon it can be concluded that the engineered GC nanogel has a fairly long blood circulation time, suitable for biomedical applications, namely, drug delivery, simultaneously allowing efficient and quick body clearance.
Resumo:
The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.
Resumo:
This work focused on how different types of oil phase, MCT (medium chain triglycerides) and LCT (long chain triglycerides), exert influence on the gelation process of beeswax and thus properties of the organogel produced thereof. Organogels were produced at different temperatures and qualitative phase diagrams were constructed to identify and classify the type of structure formed at various compositions. The microstructure of gelator crystals was studied by polarized light microscopy. Melting and crystallization were characterized by differential scanning calorimetry and rheology (flow and small amplitude oscillatory measurements) to understand organogels' behaviour under different mechanical and thermal conditions. FTIR analysis was employed for a further understanding of oil-gelator chemical interactions. Results showed that the increase of beeswax concentration led to higher values of storage and loss moduli (G, G) and complex modulus (G*) of organogels, which is associated to the strong network formed between the crystalline gelator structure and the oil phase. Crystallization occurred in two steps (well evidenced for higher concentrations of gelator) during temperature decreasing. Thermal analysis showed the occurrence of hysteresis between melting and crystallization. Small angle X-ray scattering (SAXS) analysis allowed a better understanding in terms of how crystal conformations were disposed for each type of organogel. The structuring process supported by medium or long-chain triglycerides oils was an important exploit to apprehend the impact of different carbon chain-size on the gelation process and on gels' properties.
Resumo:
In this work, oil mill wastewater (OMW), a residue generated during olive oil extraction, was evaluated as an inducer of rhamnolipid production. Using a medium containing as sole ingredients corn steep liquor (10%, v/v), sugarcane molasses (10%, w/v) and OMW (25%, v/v), Pseudomonas aeruginosa #112 produced 4.5 and 5.1 g of rhamnolipid per liter in flasks and reactor, respectively, with critical micelle concentrations as low as 13 mg/l. Furthermore, in the medium supplemented with OMW, a higher proportion of more hydrophobic rhamnolipid congeners was observed comparing with the same medium without OMW. OMW is a hazardous waste which disposal represents a serious environmental problem; therefore, its valorization as a substrate for the production of added-value compounds such as rhamnolipids is of great interest. This is the first report of rhamnolipid production using a mixture of these three agro-industrial by-products, which can be useful for the sustainable production of rhamnolipids.
Resumo:
The present work aims to contribute for the elucidation of the role of oxidative stress in the toxicity associated with the exposure of Pichia kudriavzevii to multi-metals (Cd, Pb and Zn). Cells of the non-conventional yeast P. kudriavzevii exposed for 6 h to the action of multi-metals accumulated intracellular reactive oxygen species (ROS), evaluated through the oxidation of the probe 2,7-dichlorodihydrofluorescein diacetate. A progressive loss of membrane integrity (monitored using propidium iodide) was observed in multi-metal-treated cells. The triggering of intracellular ROS accumulation preceded the loss of membrane integrity. These results suggest that the disruption of membrane integrity can be attributed to the oxidative stress. The exposure of yeast cells to single metal showed that, under the concentrations tested, Pb was the metal responsible for the induction of the oxidative stress. Yeast cells coexposed to an antioxidant (ascorbic acid) and multi-metals did not accumulate intracellular ROS, but loss proliferation capacity. Together, the data obtained indicated that intracellular ROS accumulation contributed to metal toxicity, namely for the disruption of membrane integrity of the yeast P. kudriavzevii. It was proposed that Pb toxicity (the metal responsible for the toxic symptoms under the conditions tested) result from the combination of an ionic mechanism and the intracellular ROS accumulation.
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.cej.2016.03.148.
Resumo:
It has been suggested that being physically abused leads to someone becoming a perpetrator of abuse which could be associated to parents' gender, timing of the physical abuse and specific socio-demographic variables. This study aims to investigate the role the parents' gender, timing of childhood abuse and socio-demographic variables on the relationship between parents' history of childhood physical abuse and current risk for children. The sample consisted of 920 parents (414 fathers, 506 mothers) from the Portuguese National Representative Study of Psychosocial Context of Child Abuse and Neglect who completed the Childhood History Questionnaire and the Child Abuse Potential Inventory. The results showed that fathers had lower current potential risk of becoming physical abuse perpetrators with their children than mothers although they did not differed in their physical victimization history. Moreover, the risk was higher in parents (both genders) with continuous history of victimization than in parents without victimization. Prediction models showed that for fathers and mothers separately similar socio-demographic variables (family income, number of children at home, employment status and marital status) predicted the potential risk of becoming physical abuses perpetrators. Nevertheless, the timing of victimization was different for fathers (before 13 years old) and mothers (after 13 years old). Then our study targets specific variables (timing of physical abuse, parents' gender and specific socio-demographic variables), which may enable professionals to select groups of parents at greater need of participating in abuse prevention programs.
Resumo:
OBJECTIVE: To identify useful clinical characteristics for selecting patients eligible for mapping and ablation of atrial fibrillation. METHODS: We studied 9 patients with atrial fibrillation, without structural heart disease, associated with: 1) antiarrhythmic drugs, 2) symptoms of low cardiac output, and 3) intention to treat. Seven patients had paroxysmal atrial fibrillation and 2 had recurrent atrial fibrillation. RESULTS: In the 6 patients who underwent mapping (all had paroxysmal atrial fibrillation), catheter ablation was successfully carried out in superior pulmonary veins in 5 patients (the first 3 in the left superior pulmonary vein and the last 2 in the right superior pulmonary vein). One patient experienced a recurrence of atrial fibrillation after 10 days. We observed that patients who had short episodes of atrial fibrillation on 24-hour Holter monitoring before the procedure were those in whom mapping the focus of tachycardia was possible. Tachycardia was successfully suppressed in 4 of 6 patients. The cause of failure was due to the impossibility of maintaining sinus rhythm long enough for efficient mapping. CONCLUSION: Patients experiencing short episodes of atrial fibrillation during 24-hour Holter monitoring were the most eligible for mapping and ablation, with a final success rate of 66%, versus the global success rate of 44%. Patients with persistent atrial fibrillation were not good candidates for focal ablation.
Resumo:
Background: Burnout Syndrome is the extreme emotional response to chronic occupational stress, manifesting as physical and mental exhaustion. Although associated with higher prevalence of cardiovascular risk factors, no study so far has evaluated whether the Burnout Syndrome could be a prevalent factor in non-elderly individuals active in the labor market, admitted for acute coronary syndrome (ACS). Objective: To evaluate the prevalence of the Burnout Syndrome in non-elderly, economically active patients, hospitalized with ACS. Methods: Cross-sectional study conducted in a tertiary and private cardiology center, with economically active patients aged <65 years, hospitalized with diagnosis of ACS. The Burnout Syndrome was evaluated with the Burnout Syndrome Inventory (BSI), which assesses workplace conditions and four dimensions that characterize the syndrome: emotional exhaustion (EE), emotional distancing (EmD), dehumanization (De) and professional fulfillment (PF). The Lipp’s Stress Symptoms Inventory for Adults (LSSI) was applied to evaluate global stress. Results: Of 830 patients evaluated with suspected ACS, 170 met the study criteria, 90% of which were men, overall average age was 52 years, and 40.5% had an average income above 11 minimum wages. The prevalence of the Burnout Syndrome was 4.1%. When we evaluated each dimension individually, we found high EE in 34.7%, high De in 52.4%, high EDi in 30.6%, and low PF in 5.9%. The overall prevalence of stress was 87.5%. Conclusion: We found a low prevalence of Burnout Syndrome in an economically active, non-elderly population among patients admitted for ACS in a tertiary and private hospital.
Resumo:
Identifying key sectors or key locations in an interconnected economy is of paramount importance for improving policy planning and directing economic strategy. Hence the relevance of categorizing them and hence the corresponding need of evaluating their potential synergies in terms of their global economic thrust. We explain in this paper that standard measures based on gross outputs do not and cannot capture the relevant impact due to self- imposed modeling limitations. In fact, common gross output measures will be systematically downward biased. We argue that an economy wide Computable General Equilibrium (CGE) approach provides a modeling platform that overcomes these limitations since it provides (i) a more comprehensive measure of linkages and (ii) an alternate way of accounting for links' relevance that is in consonance with standard macromagnitudes in the National Income and Product Accounts.