980 resultados para general transcription factor IIH (TFIIH)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Osteoblastic cells derived from vertebral lamina and iliac crest were isolated and cultured under the same conditions (osteogenic medium, pH, temperature, and CO(2) levels). Objective. To compare proliferation and expression of osteoblastic phenotype of cells derived from vertebral lamina and iliac grafting. Summary of Background Data. Many factors play a role in the success of bone graft in spinal fusion including osteoblastic cell population. Two common sources of graft are vertebral lamina and iliac crest, however, differences in proliferation and osteoblastic phenotype expression between cells from these sites have not been investigated. Methods. Cells obtained from cancellous bone of both vertebral lamina and iliac crest were cultured and proliferation was evaluated by direct cell counting and viability detected by Trypan blue. Alkaline phosphatase (ALP) activity was evaluated by thymolphthalein release from thymolphthalein monophosphate and matrix mineralization by staining with alizarin red S. Gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, osteoprotegerin, and receptor activator of NF-kB ligand was analyzed by real-time PCR. All comparisons were donor-matched. Results. Proliferation was greater at days 7 and 10 in cells from vertebral lamina compared with ones from iliac crest without difference in cell viability. ALP activity was higher in cells from vertebral lamina compared with cells from iliac crest at days 7 and 10. At 21 days, mineralized matrix was higher in cells derived from vertebral lamina than from iliac crest. At day 7, gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, receptor activator of NF-kB ligand, and osteoprotegerin was higher in cells derived from vertebral lamina compared with iliac crest. Conclusion. Cell proliferation and osteoblastic phenotype development in cells derived from cancellous bone were more exuberant in cultures of vertebral lamina than of iliac crest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappa B ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling. To cite this article:Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.Clin. Oral Impl. Res. 20, 2009; 240-246.doi: 10.1111/j.1600-0501.2008.01641.x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic relationship between lower (information processing speed), intermediate (working memory), and higher levels (complex cognitive processes as indexed by IQ) of mental ability was studied in a classical twin design comprising 166 monozygotic and 190 dizygotic twin pairs. Processing speed was measured by a choice reaction time (RT) task (2-, 4-, and 8-choice), working memory by a visual-spatial delayed response task, and IQ by the Multidimensional Aptitude Battery. Multivariate analysis, adjusted for test-retest reliability, showed the presence of a genetic factor influencing all variables and a genetic factor influencing 4- and 8-choice RTs, working memory, and IQ. There were also genetic factors specific to 8-choice RT, working memory, and IQ. The results confirmed a strong relationship between choice RT and IQ (phenotypic correlations: -0.31 to -0.53 in females, -0.32 to -0.56 in males; genotypic correlations: -0.45 to -0.70) and a weaker but significant association between working memory and IQ (phenotypic: 0.26 in females, 0.13 in males; genotypic: 0.34). A significant part of the genetic variance (43%) in IQ was not related to either choice RT or delayed response performance, and may represent higher order cognitive processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a functional and biochemical link between the myogenic activator MyoD, the deacetylase HDAC1, and the tumor suppressor pRb. Interaction of MyoD with HDAC1 in undifferentiated myoblasts mediates repression of muscle-specific gene expression. Prodifferentiation cues, mimicked by serum removal, induce both downregulation of HDAC1 protein and pRb hypophosphorylation. Dephosphorylation of pRb promotes the formation of pRb-HDAC1 complex in differentiated myotubes. pRb-HDAC1 association coincides with disassembling of MyoD-HDAC1 complex, transcriptional activation of muscle-restricted genes, and cellular differentiation of skeletal myoblasts. A single point mutation introduced in the HDAC1 binding domain of pRb compromises its ability to disrupt MyoD-HDAC1 interaction and to promote muscle gene expression. These results suggest that reduced expression of HDAC1 accompanied by its redistribution in alternative nuclear protein complexes is critical for terminal differentiation of skeletal muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that ATM plays a wider role in intracellular signalling in addition to DNA damage recognition and cell cycle control, In this report we show that activation of the EGF receptor is defective in ataxia-telangiectasia (A-T) cells and that sustained stimulation of cells with EGF downregulates ATM protein in control cells but not in A-T cells expressing mutant protein, Concomitant with the downregulation of ATM, DNA-binding activity of the transcription factor Spl decreased in controls after EGF treatment but increased from a lower basal level in A-T cells to that in untreated control cells, Mutation in two Spl consensus sequences in the ATM promoter reduced markedly the capacity of the promoter to support luciferase activity in a reporter assay. Overexpression of anti-sense ATM cDNA in control cells decreased the;basal level of Spl, which in turn was increased by subsequent treatment of cells with EGF, similar to that observed in,A-T cells. On the other hand full-length ATM cDNA increased the basal level of Spl binding in A-T cells, and in response to EGF Spl binding decreased, confirming that this is an ATR I-dependent process. Contrary to that observed in control cells there was no radiation-induced change in ATM protein in EGF-treated A-T cells and likewise no alteration in Spl binding activity. The results demonstrate that EGF-induced downregulation of ATM (mutant) protein in A-T cells is defective and this appears to be due to less efficient EGFR activation and abnormal Spl regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive changes that occur after chronic exposure to ethanol are an important component in the development of physical dependence. We have focused our research on ethanol-induced changes in the expression of several genes that may be important in adaptation. In this article, we describe adaptive changes at the level of the N-methyl-D-aspartate receptor, in the protein expression and activity of the Egr transcription factors, and in the expression of a novel gene of unknown function. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SOX18 is a transcription factor that is transiently expressed in nascent endothelial cells during embryonic development and adult neovascularization. This protein belongs to the SOX family of transcription factors, ih,which are proving to be some of the key regulators of cell-type specification in the vertebrate embryo. Natural mutations in the Sox18 gene have been shown to result to cardiovascular dysfunction, in some cases leading to death. Available evidence thus implicates Sox18 as an important regulator of vascular development, most likely playing a key role in endothelial cell specification. However; the genetic knockout of Sox18 in mice has produced a confounding result that complicates our understanding of the molecular mode of action of the SOX18 protein. We speculate that Sox18 inky act in a redundant fashion with closely related genes such as Sox7 and/or Sox17. (C) 2001, Elsevier Science Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sox18 encodes a transcription factor known to be important for the development of blood vessels and hair follicles in mice. In order to study the functional conservation of this gene through evolution, we have isolated and characterized Sox18 in chickens. cSox18 shows a high degree of sequence homology to both the mouse and human orthologues, particularly in the high mobility group DNA-binding domain and to a lesser extent in the transcriptional activation domain. A region of unusually high sequence conservation at the C-terminus may represent a further, previously unrecognized functional domain. Both the chicken and human proteins appear to be truncated at the N-terminus relative to mouse SOX18. In situ hybridization analyses showed expression in the developing vasculature and feather follicles, consistent with reported expression in the mouse embryo. In addition, cSox18 mRNA was observed in the retina and claw beds. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, we demonstrated that mutations in the Sry-related HMG box gene Sox18 underlie vascular and hair follicle defects in the mouse allelic mutants ragged (Ra) and RaJ. Ra mice display numerous anomalies in the homozygote including, oedema, peritoneal secretions, and are almost completely naked. Sox18 and the MADS box transcription factor, Mef2C, are expressed in developing endothelial cells. Null mutants in Sox18 and Mef2c display overlapping phenotypic abnormalities, hence, we investigated the relationship between these two DNA binding proteins. We report here the direct interaction between MEF2C and SOX18 proteins, and establish that these proteins are coexpressed in vivo in endothelial cell nuclei. MEF2C expression potentiates SOX18-mediated transcription in vivo and regulates the function of the SOX18 activation domain. Interestingly, MEF2C fails to interact or co-activate transcription with the Ra or RaJ mutant SOX18 proteins. These results suggest that MEF2C and SOX18 may be important partners directing the transcriptional regulation of vascular development. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sox gene family (Sry like HMG box gene) is characterised by a conserved DNA sequence encoding a domain of approximately 80 amino acids which is responsible for sequence specific DNA binding. We initially published the identification and partial cDNA sequence of murine Sox18, a new member of this gene family, isolated from a cardiac cDNA library. This sequence allowed us to classify Sox18 into the F sub-group of Sox proteins, along with Sox7 and Sox17. Recently, we demonstrated that mutations in the Sox18 activation domain underlie cardiovascular and hair follicle defects in the mouse mutation, ragged (Ra) (Pennisi et al., 2000. Mutations in Sox18 underlie cardiovascular and hair follicle defecs in ragged mice. Nat. Genet. 24, 434-437). Ra homozygotes lack vibrissae and coat hairs, have generalised oedema and an accumulation of chyle in the peritoneum. Here we have investigated the genomic sequences encoding Sox18. Screening of a mouse genomic phage library identified four overlapping clones, we sequenced a 3.25 kb XbaI fragment that defined the entire coding region and approximately 1.5 kb of 5' flanking sequences. This identified (i) an additional 91 amino acids upstream of the previously designated methionine start codon in the original cDNA, and (ii);ln intron encoded within the HMG box/DNA binding domain in exactly the same position as that found in the Sox5, -13 and -17 genes. The Sox18 gene encodes a protein of 468 aa. We present evidence that suggests HAF-2, the human HMG-box activating factor-2 protein, is the orthologue of murine Sox18. HAF-2 has been implicated in the regulation of the Human IgH enhancer in a B cell context. Random mutagenesis coupled with GAL4 hybrid analysis in the activation domain between amino acids 252 and 346, of Sox18, implicated the phosphorylation motif, SARS, and the region between amino acid residues 313 and 346 as critical components of Sox18 mediated transactivation. Finally, we examined the expression of Sox18 in multiple adult mouse tissues using RT-PCR. Low-moderate expression was observed in spleen, stomach, kidney, intestine, skeletal muscle and heart. Very abundant expression was detected in lung tissue. (C) 2001 Elsevier Science B.V. All rights reserved.