962 resultados para fuzzy subsethood measures
Resumo:
Although visual surveillance has emerged as an effective technolody for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacyrelated applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest, and then applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain, and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.
Resumo:
Fuzzy answer set programming (FASP) is a generalization of answer set programming to continuous domains. As it can not readily take uncertainty into account, however, FASP is not suitable as a basis for approximate reasoning and cannot easily be used to derive conclusions from imprecise information. To cope with this, we propose an extension of FASP based on possibility theory. The resulting framework allows us to reason about uncertain information in continuous domains, and thus also about information that is imprecise or vague. We propose a syntactic procedure, based on an immediate consequence operator, and provide a characterization in terms of minimal models, which allows us to straightforwardly implement our framework using existing FASP solvers.
Resumo:
A RkNN query returns all objects whose nearest k neighbors
contain the query object. In this paper, we consider RkNN
query processing in the case where the distances between
attribute values are not necessarily metric. Dissimilarities
between objects could then be a monotonic aggregate of dissimilarities
between their values, such aggregation functions
being specified at query time. We outline real world cases
that motivate RkNN processing in such scenarios. We consider
the AL-Tree index and its applicability in RkNN query
processing. We develop an approach that exploits the group
level reasoning enabled by the AL-Tree in RkNN processing.
We evaluate our approach against a Naive approach
that performs sequential scans on contiguous data and an
improved block-based approach that we provide. We use
real-world datasets and synthetic data with varying characteristics
for our experiments. This extensive empirical
evaluation shows that our approach is better than existing
methods in terms of computational and disk access costs,
leading to significantly better response times.
Resumo:
We describe five children who died of clinical rabies in a three month period (September to November 2011) in the Queen Elizabeth Central Hospital. From previous experience and hospital records, this number of cases is higher than expected. We are concerned that difficulty in accessing post-exposure prophylaxis (PEP) rabies vaccine may be partly responsible for this rise. We advocate: (a) prompt course of active immunisation for all patients with significant exposure to proven or suspected rabid animals. (b) the use of an intradermal immunisation regime that requires a smaller quantity of the vaccine than the intramuscular regime and gives a better antibody response. (c) improved dog rabies control measures.
Resumo:
Recently there has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and architectural complexity). Once one has learned a model based on their devised method, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Unfortunately, the standard tests used for this purpose are not able to jointly consider performance measures. The aim of this paper is to resolve this issue by developing statistical procedures that are able to account for multiple competing measures at the same time. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameter of such models, as usually the number of studied cases is very reduced in such comparisons. Real data from a comparison among general purpose classifiers is used to show a practical application of our tests.
Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique
Resumo:
The evaporator is an important component in the Organic Rankine Cycle (ORC)-based Waste Heat Recovery (WHR) system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.