942 resultados para few-mode isotropic waveguides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several time dependent fluorescence Stokes shift (TDFSS) experiments have reported a slow power law decay in the hydration dynamics of a DNA molecule. Such a power law has neither been observed in computer simulations nor in some other TDFSS experiments. Here we observe that a slow decay may originate from collective ion contribution because in experiments DNA is immersed in a buffer solution, and also from groove bound water and lastly from DNA dynamics itself. In this work we first express the solvation time correlation function in terms of dynamic structure factors of the solution. We use mode coupling theory to calculate analytically the time dependence of collective ionic contribution. A power law decay in seen to originate from an interplay between long-range probe-ion direct correlation function and ion-ion dynamic structure factor. Although the power law decay is reminiscent of Debye-Falkenhagen effect, yet solvation dynamics is dominated by ion atmosphere relaxation times at longer length scales (small wave number) than in electrolyte friction. We further discuss why this power law may not originate from water motions which have been computed by molecular dynamics simulations. Finally, we propose several experiments to check the prediction of the present theoretical work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach is presented for achieving an enhanced photo-response in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold PLC. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guidance laws based on a conventional sliding mode ensures only asymptotic convergence. However, convergence to the desired impact angle within a finite time is important in most practical guidance applications. These finite time convergent guidance laws suffer from singularity leading to control saturation. In this paper, guidance laws to intercept targets at a desired impact angle, from any initial heading angle, without exhibiting any singularity, are presented. The desired impact angle, which is defined in terms of a desired line-of-sight angle, is achieved in finite time by selecting the interceptor's lateral acceleration to enforce nonsingular terminal sliding mode on a switching surface designed using nonlinear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance laws for different initial engagement geometries and impact angles. Although the guidance laws are designed for constant speed interceptors, its robustness against the time-varying speed of interceptors is also evaluated through extensive simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite volume methods traditionally employ dimension by dimension extension of the one-dimensional reconstruction and averaging procedures to achieve spatial discretization of the governing partial differential equations on a structured Cartesian mesh in multiple dimensions. This simple approach based on tensor product stencils introduces an undesirable grid orientation dependence in the computed solution. The resulting anisotropic errors lead to a disparity in the calculations that is most prominent between directions parallel and diagonal to the grid lines. In this work we develop isotropic finite volume discretization schemes which minimize such grid orientation effects in multidimensional calculations by eliminating the directional bias in the lowest order term in the truncation error. Explicit isotropic expressions that relate the cell face averaged line and surface integrals of a function and its derivatives to the given cell area and volume averages are derived in two and three dimensions, respectively. It is found that a family of isotropic approximations with a free parameter can be derived by combining isotropic schemes based on next-nearest and next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone in a standard finite volume framework, however, is found to be insufficient in enforcing rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly identified and recast in a differential form. Various forms of flux correction terms which allow for a full recovery of rotational invariance in the lowest order truncation error terms, while preserving the formal order of accuracy and discrete conservation of the original finite volume method, are developed. Numerical tests in two and three dimensions attest the superior directional attributes of the proposed isotropic finite volume method. Prominent anisotropic errors, such as spurious asymmetric distortions on a circular reaction-diffusion wave that feature in the conventional finite volume implementation are effectively suppressed through isotropic finite volume discretization. Furthermore, for a given spatial resolution, a striking improvement in the prediction of kinetic energy decay rate corresponding to a general two-dimensional incompressible flow field is observed with the use of an isotropic finite volume method instead of the conventional discretization. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the merging and splitting of quasi-two-dimensional Bose-Einstein condensates with strong dipolar interactions. We observe that if the dipoles have a non-zero component in the plane of the condensate, the dynamics of merging or splitting along two orthogonal directions, parallel and perpendicular to the projection of dipoles on the plane of the condensate, are different. The anisotropic merging and splitting of the condensate is a manifestation of the anisotropy of the roton-like mode in the dipolar system. The difference in dynamics disappears if the dipoles are oriented at right angles to the plane of the condensate as in this case the Bogoliubov dispersion, despite having roton-like features, is isotropic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the formulation and numerical efficiency of various numerical models of different nonconserving time integrators for studying wave propagation in nonlinear hyperelastic waveguides. The study includes different nonlinear finite element formulations based on standard Galerkin finite element model, time domain spectral finite element model, Taylor-Galerkin finite element model, generalized Galerkin finite element model and frequency domain spectral finite element model. A comparative study on the computational efficiency of these different models is made using a hyperelastic rod model, and the optimal computational scheme is identified. The identified scheme is then used to study the propagation of transverse and longitudinal waves in a Timoshenko beam with Murnaghan material nonlinearity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitive dependence of the electronic and thermoelectric properties of MoS2 on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS2 can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS2 emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few-layer transition metal dichalcogenide alloys based on molybdenum sulphoselenides MoS2(1-x)Se2x] possess higher hydrogen evolution (HER) activity compared to pristine few-layer MoS2 and MoSe2. Variation of the sulphur or selenium content in the parent dichalcogenides reveals a systematic structure-activity relationship for different compositions of alloys, and it is found that the composition MoS1.0Se1.0 shows the highest HER activity amongst the catalysts studied. The tunable electronic structure of MoS2/MoSe2 upon Se/S incorporation probably assists in the realization of high HER activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief, decentralized sliding mode controllers that enable a connected and leaderless swarm of unmanned aerial vehicles (UAVs) to reach a consensus in altitude and heading angle are presented. In addition, sliding mode control-based autopilot designs to control those states for which consensus is not required are also presented. By equipping each UAV with this combination of controllers, it can autonomously decide on being a member of the swarm or fly independently. The controllers are designed using a coupled nonlinear dynamic model, derived for the YF-22 aircraft, where the aerodynamic forces and moments are linear functions of the states and inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flame particles are surface points that always remain embedded on, by comoving with a given iso-scalar surface within a flame. Tracking flame particles allow us to study the fate of propagating surface locations uniquely identified throughout their evolution with time. In this work, using Direct Numerical Simulations we study the finite lifetime of such flame particles residing on iso-temperature surfaces of statistically planar H-2-air flames interacting with near-isotropic turbulence. We find that individual flame particles as well as their ensemble, experience progressively increasing tangential straining rate (K-t) and increasing negative curvature (kappa) near the end of their lifetime to finally get annihilated. By studying two different turbulent flow conditions, flame particle tracking shows that such tendency of local flame surfaces to be strained and cusped towards pinch-off from the main surface is a rather generic feature, independent of initial conditions, locations and ambient turbulence intensity levels. The evolution of the alignments between the flame surface normals and the principal components of the local straining rates are also tracked. We find that the surface normals initially aligned with the most extensive principal strain rate components, rotate near the end of flame particles' lifetime to enable preferential alignment between the surface tangent and the most extensive principal strain rate component. This could explain the persistently increasing tangential strain rate, sharp negative curvature formation and eventual detachment. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ac-side terminal voltages of parallel-connected converters are different if the line reactive drops of the individual converters are different. This could result either from differences in per-phase inductances or from differences in the line currents of the converters. In such cases, the modulating signals are different for the converters. Hence, the common-mode (CM) voltages for the converters, injected by conventional space vector pulsewidth modulation (CSVPWM) to increase dc-bus utilization, are different. Consequently, significant low-frequency zero-sequence circulating currents result. This paper proposes a new modulation method for parallel-connected converters with unequal terminal voltages. This method does not cause low-frequency zero-sequence circulating currents and is comparable with CSVPWM in terms of dc-bus utilization and device power loss. Experimental results are presented at a power level of 150 kVA from a circulating-power test setup, where the differences in converter terminal voltages are quite significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, three dimensional impact angle control guidance laws are proposed for stationary targets. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal 2-dimensional planes, the guidance laws are derived using the coupled dynamics. These guidance laws are designed using principles of conventional as well as nonsingular terminal sliding mode control theory. The guidance law based on nonsingular terminal sliding mode guarantees finite time convergence of interceptor to the desired impact angle. In order to derive the guidance laws, multi-dimension switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance law.