774 resultados para fatty acid profile
Resumo:
Resumo: A procura por carne de qualidade tem proporcionado ao setor de ovinocultura a adoção por técnicas de produção que possam contribuir para disponibilizar ao mercado produtos que atendam as necessidades dos consumidores, que se tornam cada vez mais exigentes quanto à aquisição de produtos que possam trazer benefícios a saúde. Assim, objetivou-se determinar a qualidade da carne de ovinos puros e cruzados criados no semiárido Nordestino. Utilizaram-se 30 cordeiros machos e fêmeas, oriundos dos cruzamentos Morada Nova x Morada Nova, Rabo Largo x Morada Nova e Santa Inês x Morada Nova, alojados em baias e alimentados com dieta a base de capim Canarana, milho farelo de soja e calcário. Os animais foram abatidos com peso médio de 24 kg de peso vivo e as carcaças mantidas em câmara frigorífica a 4?C, por 24 horas. Após esse período, foi seccionado o músculo Longissimus dorsi que foi embalado, identificado e armazenado a 20?C. Foram determinados os atributos físicos de capacidade de retenção de água, perda de peso por cocção e força de cisalhamento; os atributos químicos como umidade, proteína, cinza, lipídios e colesterol; avaliações subjetivas da carcaça como cor, marmoreio, textura da carne, distribuição da gordura, espessura da gordura e área de olho de lombo; os sensoriais de dureza, suculência, sabor, aroma e aceitação global e o perfil de ácidos graxos. O delineamento utilizado foi em esquema fatorial 3x2 (três grupos genéticos e dois sexos) e as médias comparadas pelo teste de Duncan a 5%. Não houve diferença (p>0,05) entre os genótipos para a composição química da carne, exceto para a variável lipídio (p<0,05). Para as características subjetivas da carcaça o genótipo influenciou (p<0,05) nas variáveis cor, marmoreio e textura da carne. O genótipo promoveu efeito (p<0,05) para as características físicas de capacidade de retenção de água e perda de peso por cocção. Os atributos sensoriais não sofreram efeitos (p>0,05) dos genótipos avaliados. Os genótipos influenciaram (p<0,05) as concentrações dos ácidos graxos saturados, monoinsaturados e poli-insaturados assim como, nas relações ?3:?6 e AGM:AGS. O fator sexo influenciou (p<0,05) nas variáveis umidade, força de cisalhamento, dureza, ácidos graxos desejáveis e relação ?3:?6. O cruzamento entre raças nativas mostrou-se com potencial para a produção de carne de qualidade, a raça Morada Nova melhorou os atributos físico-químicos da carne e em seu perfil lipídico e, o fator sexo melhorou o atributo maciez dando destaque a carne das fêmeas. Abstract: The demand for quality meat products has given the sheep industry sector productions techniques that can contribute providing the market with products that supply the needs of consumers require, who are becoming more demanding as the acquisition of differentiated and bring health benefits. The objective was to evaluate the quality of the pure sheep meat and cross bred in the semiarid Northeast of Brazil. It was used 30 male lambs and female, that came from crosses Morada Nova x Morada Nova, Rabo Largo x Morada Nova and Santa Ines x Morada Nova, housed in pens and fed a diet of grass Canarana, corn soybean meal and limestone. The animals were slaughtered at average weight of 24 kg, live weight, and carcasses kept in refrigeration chamber at 4 ° C for 24 hours. After this period the Longissimus dorsi muscle was selected, packaged, labeled and stored at 20˚C. The physical attributes were determined such as water holding capacity, cooking weight loss and shear force; the chemical attributes such as moisture, protein, ash, lipids and cholesterol; Subjective evaluations such as color, marbling, meat texture, fat distribution, fat thickness and loin eye area; the hardness sensory, juiciness, flavor, aroma and global acceptance and fatty acid profile. The design was a 3x2 factorial arrangement (three genetic groups and two genders) and the measures compared by Duncan test at 5%. There was no difference (p> 0.05) between genotypes for the chemical composition of meat, except for the lipid variable (p <0.05). To the subjective characteristics of the carcass, the genotype influenced (p <0.05) in the variables color, marbling and meat texture. The genotype promoted significant effect (p <0.05) for the physical characteristics, water retention capacity and weight loss on cooking. The sensory attributes did not suffer significant effects (p> 0.05) of the evaluated genotypes. The genotypes influenced (p <0.05) in the concentrations of saturated fatty acids, monounsaturated and polyunsaturated as well as in the relations ω3: ω6 and AGM:AGS. The gender factor influenced (P <0.05) in the variables moisture, shear strength, hardness, desirable fatty acids and relation ω3: ω6. The cross between native breeds showed up with potential for quality meat production, the Morada Nova improved the physical and chemical attributes of the flesh and in their lipid profiles and sex factor improved softness attribute highlighting the meat of females.
Resumo:
Sunflower is one of the most important oilseed crops and produces a high-quality edible oil. Balance of fatty acids in standard sunflower oil shows preponderance of linoleic rather than oleic acid, and conditions during seed development, such as temperature, changes the oleic/linoleic ratio of the oil. This work aimed to evaluate the environmental effect on fatty acid profile in a group of standard and high oleic varieties and hybrids. Seeds were produced during regular season crop and during off-season crop featuring different temperatures from anthesis to maturity. Fatty acid composition was determined by gas chromatography. Levels of oleic acid, in standard oil genotypes, raised as the crop developed in warmer environment while levels of linoleic acid decreased, and the opposite was observed when the crop was grown under lower temperature. High oleic genotypes were less sensitive to environment switching and showed lower variation on fatty acid composition.
Resumo:
Background: Interest in the development of dairy products naturally enriched in conjugated linoleic acid (CLA) exists. However, feeding regimens that enhance the CLA content of milk also increase concentrations of trans-18:1 fatty acids. The implications for human health are not yet known. Objective: This study investigated the effects of consuming dairy products naturally enriched in cis-9,trans-11 CLA (and trans-11 18:1) on the blood lipid profile, the atherogenicity of LDL, and markers of inflammation and insulin resistance in healthy middle-aged men. Design: Healthy middle-aged men (n = 32) consumed ultra-heat-treated milk, butter, and cheese that provided 0.151 g/d (control) or 1.421 g/d (modified) cis-9,trans-11 CLA for 6 wk. This was followed by a 7-wk washout and a crossover to the other treatment. Results: Consumption of dairy products enriched with cis-9,trans-11 CLA and trans-11 18:1 did not significantly affect body weight, inflammatory markers, insulin, glucose, triacylglycerols, or total, LDL, and HDL cholesterol but resulted in a small increase in the ratio of LDL to HDL cholesterol. The modified dairy products changed LDL fatty acid composition but had no significant effect on LDL particle size or the susceptibility of LDL to oxidation. Overall, increased consumption of full-fat dairy products and naturally derived trans fatty acids did not cause significant changes in cardiovascular disease risk variables, as may be expected on the basis of current health recommendations. Conclusion: Dairy products naturally enriched with cis-9,trans-11 CLA and trans-11 18: 1 do not appear to have a significant effect on the blood lipid profile.
Resumo:
Background: Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods: Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results: Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion: Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively. © 2013 Oliveira Junior et al.; licensee BioMed Central Ltd.
Resumo:
Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.
Resumo:
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.
Resumo:
Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.
Resumo:
Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.
Resumo:
The processing of fish roe leads to changes in its chemical composition, the extent of which depends on the techniques and additives employed. This study aimed to investigate the effects of ripening temperature and the use of sodium benzoate and citric acid on the quality of ripened cod roe, with respect to the contents of volatile base nitrogen (VBN), trimethylamine (TMA), biogenic amines (BA) and on the lipid composition. In comparison with fresh roes, ripened roes presented higher contents of VBN, TMA, BA and the proportion of free fatty acids regardless of the temperature and additives used during the ripening process. The greatest increases were observed in the samples ripened at 17 degrees C without additives, in which histamine was detected at 8.8 mg/100 g. A low ripening temperature was the main factor responsible for minimising changes in the cod roe composition. The addition of sodium benzoate as a preservative or citric acid to decrease the pH value had a significant effect in maintaining the quality of the cod roes, mainly at high ripening temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fatty acids have been used in marine biogeochemistry as food chain biomarkers, but in freshwater these studies are rare. In order to evaluate the fatty acid potential as biomarkers in freshwater, their profile was analyzed during vitellogenesis in two fish species, in both waterfall and reservoir environments of the Paraiba do Sul River Basin. Detrivorous Hypostomus affinis and omnivorous Geophagus brasiliensis seem to elongate and desaturate polyunsaturated fatty acids (PUFA) and transfer them to the ovaries` phospholipids. Waterfall Geophagus brasiliensis have more highly unsaturated fatty acids in the liver, but in the reservoir, accumulation mainly occurs in muscle and ovary triglycerides, suggesting trophic opportunism and a plasticity during vitellogenesis. In Hypostomus affinis, PUFA alteration occurs only in the reservoir, suggesting a high phytoplankton occurrence. Eutrophication and water speed is reflected in Hypostomus affinis ovaries by higher PUFAn3 and bacterial fatty acids. As in marine environments, analysis of mono- and polyunsaturated fatty acids during vitellogenesis can be used as a tool in food chain studies in freshwater.
Resumo:
Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
Objective Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. Design and Methods Female rats subcutaneously (sc) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. Results The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. Conclusion In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome. Copyright © 2012 The Obesity Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate effects of feeding monensin (MON) or a multivalent polyclonal antibody preparation (PAP) against several rumen microorganisms on feedlot performance, carcass characteristics, blood gas profile, and rumenitis of Bos indicus biotype (BT) yearling bulls. The study was designed as a completely randomized design with a 3 x 2 factorial arrangement, replicated 4 times, in which 32 yearling bulls of each of 3 BT evaluated (3-way-cross, TC; Canchim, CC; and Nellore, NE) were fed diets containing either MON at 300 mg.d(-1) or PAP at 10 mL.d(-1) across 3 different periods. No significant (P > 0.10) feed additive (FA) main effects were observed for any of the feedlot performance variables and carcass characteristics with the exception of dressing percentage. Yearling bulls receiving PAP had a decreased (P = 0.047) dressing percentage when compared with yearling bulls receiving MON. Significant (P < 0.05) BT main effects were observed for all feedlot performance variables and carcass characteristics with the exception of kidney-pelvic fat expressed in kilograms (P = 0.49) and LM lipids content (P = 0.45). Crossbred yearling bulls (TC and CC) had greater (P < 0.001) ADG, DMI in kilograms, DMI as % of BW, and improved (P = 0.001) G: F when compared with NE yearling bulls. A tendency (P = 0.072) for a FA main effect was observed for rumenitis scores, in which yearling bulls receiving PAP had lesser rumenitis scores than those receiving MON. When the data were disposed as frequency percentage, 55.6% and 45.7% of the rumens from yearling bulls fed PAP and MON were scored between 0 and 1, respectively (0 = no lesions, 10 = severe lesions). Likewise, a significant BT main effect was observed (P = 0.008), where NE yearling bulls had greater rumenitis scores than those of crossbred yearling bulls (TC and CC). No signifi cant FA main effects were observed (P > 0.10) for any of the fatty acids measured in the subcutaneous adipose tissue, with the exception that yearling bulls receiving MON had greater (P < 0.05) concentrations of palmitic acid (16: 0), margaric acid (17: 0), docosapentaenoic acid (22: 5), and docosahexaenoic acid (22: 6) than those yearling bulls receiving PAP. Feeding PAP tended to decrease incidence of rumen lesions and led to similar feedlot performance compared with feeding MON. Thus, PAP is a new technology that presents a possible alternative for ionophores.
Resumo:
In functional dairy products, polyunsaturated fatty acids such as, conjugated linoleic acid (CLA) and alpha-linolenic acid (ALA) have been highlighted for their benefits related to prevention of some chronic diseases. In order to study the effect of type of milk (conventional vs. organic, characterized by a specific fatty acid composition), Bifidobacterium animalis subsp. lactis (BB12, B94, BL04 and HN019) counts, acidification activity and chemical composition (pH, lactose, lactic acid contents and fatty acids profile) were investigated before fermentation and after 24 h of products stored at 4 degrees C. Organic and conventional milk influenced acidification performance and bacteria counts, which was strain-dependent. Higher counts of BB12 were observed in organic milk, whereas superior counts of BL04 were found in conventional milk. Organic fermented milk showed lower levels in saturated fatty acids (FA) and higher in monounsaturated FA contents. Similarly, among bioactive FA, organic fermented milks have higher amounts of trans vaccenic acid (TVA-C18:1t), conjugated linoleic acid (CLA) and slightly higher contents of alpha-linoleic acid (ALA). (C) 2012 Elsevier Ltd. All rights reserved.