978 resultados para factorial design


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As global climate continues to change, it becomes more important to understand possible feedbacks from soils to the climate system. This dissertation focuses on soil microbial community responses to climate change factors in northern hardwood forests. Two soil warming experiments at Harvard Forest in Massachusetts, and a climate change manipulation experiment with both elevated temperature and increased moisture inputs in Michigan were sampled. The hyphal in-growth bag method was to understand how soil fungal biomass and respiration respond to climate change factors. Our results from phospholipid fatty acid (PLFA) analyses suggest that the hyphal in-growth bag method allows relatively pure samples of fungal hyphae to be partitioned from bacteria in the soil. The contribution of fungal hyphal respiration to soil respiration was examined in climate change manipulation experiments in Massachusetts and Michigan. The Harvard Forest soil warming experiments in Massachusetts are long-term studies with 8 and 18 years of +5 °C warming treatment. Hyphal respiration and biomass production tended to decrease with soil warming at Harvard Forest. This suggests that fungal hyphae adjust to higher temperatures by decreasing the amount of carbon respired and the amount of carbon stored in biomass. The Ford Forestry Center experiment in Michigan has a 2 x 2 fully factorial design with warming (+4-5 °C) and moisture addition (+30% average ambient growing season precipitation). This experiment was used to examine hyphal growth and respiration of arbuscular mycorrhizal fungi (AMF), soil enzymatic capacity, microbial biomass and microbial community structure in the soil over two years of experimental treatment. Results from the hyphal in-growth bag study indicate that AMF hyphal growth and respiration respond negatively to drought. Soil enzyme activities tend to be higher in heated versus unheated soils. There were significant temporal variations in enzyme activity and microbial biomass estimates. When microbial biomass was estimated using chloroform fumigation extractions there were no differences between experimental treatments and the control. When PLFA analyses were used to estimate microbial biomass we found that biomass responds negatively to higher temperatures and positively to moisture addition. This pattern was present for both bacteria and fungi. More information on the quality and composition of the organic matter and nutrients in soils from climate change manipulation experiments will allow us to gain a more thorough understanding of the mechanisms driving the patterns reported here. The information presented here will improve current soil carbon and nitrogen cycling models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two experiments were conducted to evaluate the effects of body condition scores of beef calves on performance efficiency and carcass characteristics. In Experiment 1, 111 steer calves were stratified by breed and condition score (CS) and randomly allotted to 14 pens. The study was analyzed as a 2 x 3 factorial design, with two breeds (Angus and Simmental) and three initial CS (4.4, 5.1, and 5.6). In Experiment 2, 76 steer calves were allotted to six pens by CS. The resultant pens averaged 3.9, 4.5, 4.7, 5.0, 5.1, and 5.6 in CS. Calves in both studies were fed a corn-based finishing diet formulated to 13.5% crude protein. All calves were implanted with Synovex- SÒ initially and reimplanted with Revalor-SÒ. In Experiment 1, 29-day dry matter intake (lb/day) increased with CS (17.9, 18.1, and 19.1 for 4.4, 5.1, and 5.6, respectively; p < .04). Daily gain (29 days) tended to decrease with increasing CS (4.19, 3.71, and 3.26; p < .13). Days on feed decreased with increasing CS (185, 180, and 178d; p < .07). In Experiment 2, daily gains also increased with decreasing initial CS for the first 114 days (p < .05) and tended to increase overall (p < .20). In Experiment 1, calves with lower initial CS had less external fat at slaughter (.48, .53, and .61 in. for CS 4.4, 5.1, and 5.6, respectively; p < .05). This effect was also noted at slaughter (p < .10), as well as at 57 days (p < .06) and at 148 days (p < .06) as measured by real-time ultrasound. Measurements of intramuscular fat and marbling were not different in either study. These data suggest that CS of feeder calves may be a useful tool for adjusting energy requirements of calves based on body condition. Also, feeder cattle may be sorted into outcome or management groups earlier than currently practiced using body condition and/or real-time ultrasound.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To quantify species- specific relationships between bivalve carbonate isotope geochemistry ( delta O-18(c)) and water conditions ( temperature and salinity, related to water isotopic composition [delta O-18(w)]), an aquaculture-based methodology was developed and applied to Mytilus edulis ( blue mussel). The four- by- three factorial design consisted of four circulating temperature baths ( 7, 11, 15, and 19 degrees C) and three salinity ranges ( 23, 28, and 32 parts per thousand ( ppt); monitored for delta O-18(w) weekly). In mid- July of 2003, 4800 juvenile mussels were collected in Salt Bay, Damariscotta, Maine, and were placed in each configuration. The size distribution of harvested mussels, based on 105 specimens, ranged from 10.9 mm to 29.5 mm with a mean size of 19.8 mm. The mussels were grown in controlled conditions for up to 8.5 months, and a paleotemperature relationship based on juvenile M. edulis from Maine was developed from animals harvested at months 4, 5, and 8.5. This relationship [ T degrees C = 16.19 (+/- 0.14) - 4.69 (+/- 0.21) {delta O-18(c) VPBD - delta O-18(w) VSMOW} + 0.17 (+/- 0.13) {delta O-18(c) VPBD - delta O-18(w) VSMOW}(2); r(2) = 0.99; N = 105; P < 0.0001] is nearly identical to the Kim and O'Neil ( 1997) abiogenic calcite equation over the entire temperature range ( 7 - 19 degrees C), and it closely resembles the commonly used paleotemperature equations of Epstein et al. ( 1953) and Horibe and Oba ( 1972). Further, the comparison of the M. edulis paleotemperature equation with the Kim and O'Neil ( 1997) equilibrium- based equation indicates that M. edulis specimens used in this study precipitated their shell in isotopic equilibrium with ambient water within the experimental uncertainties of both studies. The aquaculture- based methodology described here allows similar species- specific isotope paleothermometer calibrations to be performed with other bivalve species and thus provides improved quantitative paleoenvironmental reconstructions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: According to the theoretical model of Cranach, Ochsenbein, and Valach (1986) understanding group actions needs consideration of aspects at both the group level and the level of individual members. For example individual action units constituting group actions are motivated at the individual level while potentially being affected by characteristics of the group. Theoretically, group efficacy beliefs could be a part of this motivational process as they are an individual’s cognitive contents about group-level abilities to perform well in a specific task. Positive relations between group level efficacy-beliefs and group performance have been reported and Bandura and Locke (2003) argue that this relationship is being mediated by motivational processes and goal setting. The aims of this study were a) to examine the effects of group characteristics on individual performance motivation and b) to test if those are mediated by individual group efficacy beliefs. Methods: Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the university of Berne participated in this scenario based experiment. Data were collected on two collection points. Subjects were provided information about fictive team members with whom they had to perform a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking respectively) were combined in a 3x3 full factorial design (Anderson, 1982) yielding nine groups. Subjects were asked how confident they were that the teams would perform well in the task (individual group efficacy beliefs), and to provide information about their motivation to perform at their best in the respective group contexts (performance motivation). Multilevel modeling (Mplus) was used to estimate the effects of the factors swim and bike, and the context-varying covariate individual group efficacy beliefs on performance motivation. Further analyses were undertaken to test if the effects of group contexts on performance motivation are mediated by individual group efficacy beliefs. Results: Significant effects were reported for both the group characteristics (βswim = 7.86; βbike = 8.57; both p < .001) and the individual group efficacy beliefs (βigeb; .40, p < .001) on performance motivation. The subsequent mediation model indicated that the effects of group characteristics on performance motivation were partly mediated by the individual group efficacy beliefs of the subjects with significant mediation effects for both factors swim and bike. Discussion/Conclusion: The results of the study provide further support for the motivational character of efficacy beliefs and point out a mechanism by which team characteristics influence performance relevant factors at the level of individual team members. The study indicates that high team abilities lead to augmented performance motivation, adding a psychological advantage to teams already high on task relevant abilities. Future investigations will be aiming at possibilities to keep individual performance motivation high in groups with low task relevant abilities. One possibility could be the formulation of individual task goals. References: Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press. Bandura, A. & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87-99. Cranach, M. von, Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Research has shown that individuals infer their group-efficacy beliefs from the groups’ abilities to perform in specific tasks. Group abilities also seem to affect team members’ performance motivation adding a psychological advantage to teams already high on task relevant abilities. In a recent study we found the effect of group abilities on individual performance motivation to be partially mediated by the team members’ individual group-efficacy beliefs which is an example of how attributes on a group-level can be affecting individual-level parameters. Objectives The study aimed at testing the possibility to reduce the direct and mediated effects of low group abilities on performance motivation by augmenting the visibility of individual contributions to group performances via the inclusion of a separate ranking on individual performances. Method Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the University of Bern participated in the study. At three collection points (t1-3) subjects were provided information about fictive team members with whom they had to imagine performing a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking) were combined in a 3x3 full factorial design yielding nine groups with different ability profiles. At t1 subjects were asked to rate their confidence that the teams would perform well in the triathlon task, at t2 and t3 subjects were asked how motivated they were to perform at their best in the respective groups. At t3 the presence of an individual performance ranking was mentioned in the cover story. Mixed linear models (SPSS) and structural equation models for complex survey data (Mplus) were specified to estimate the effects of the individual performance rankings on the relationship between group-efficacy beliefs and performance motivation. Results A significant interaction effect for individual group-efficacy beliefs and the triathlon condition on performance motivation was found; the effect of group-efficacy beliefs on performance motivation being smaller with individual performance rankings available. The partial mediation of group attributes on performance motivation by group-efficacy beliefs disappeared with the announcement of individual performance rankings. Conclusion In teams low in task relevant abilities the disadvantageous effect of group-efficacy beliefs on performance motivation might be reduced by providing means of evaluating individual performances apart from a group’s overall performance. While it is believed that a common group goal is a core criterion for a well performing sport group future studies should also aim at the possible benefit of individualized goal setting in groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the literature, contrasting effects of plant species richness on the soil water balance are reported. Our objective was to assess the effects of plant species and functional richness and functional identity on soil water contents and water fluxes in the experimental grassland of the Jena Experiment. The Jena Experiment comprises 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional group composition (zero to four functional groups: legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design. We recorded meteorological data and soil water contents of the 0·0–0·3 and 0·3–0·7 m soil layers and calculated actual evapotranspiration (ETa), downward flux (DF), and capillary rise with a soil water balance model for the period 2003–2007. Missing water contents were estimated with a Bayesian hierarchical model. Species richness decreased water contents in subsoil during wet soil conditions. Presence of tall herbs increased soil water contents in topsoil during dry conditions and decreased soil water contents in subsoil during wet conditions. Presence of grasses generally decreased water contents in topsoil, particularly during dry phases; increased ETa and decreased DF from topsoil; and decreased ETa from subsoil. Presence of legumes, in contrast, decreased ETa and increased DF from topsoil and increased ETa from subsoil. Species richness probably resulted in complementary water use. Specific functional groups likely affected the water balance via specific root traits (e.g. shallow dense roots of grasses and deep taproots of tall herbs) or specific shading intensity caused by functional group effects on vegetation cover. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Research has shown that individuals infer their group-efficacy beliefs from the groups’ abilities to perform in specific tasks. Group abilities also seem to affect team members’ performance motivation adding a psychological advantage to teams already high on task relevant abilities. In a recent study we found the effect of group abilities on individual performance motivation to be partially mediated by the team members’ individual group-efficacy beliefs which is an example of how attributes on a group-level can be affecting individual-level parameters. Objectives The study aimed at testing the possibility to reduce the direct and mediated effects of low group abilities on performance motivation by augmenting the visibility of individual contributions to group performances via the inclusion of a separate ranking on individual performances. Method Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the University of Bern participated in the study. At three collection points (t1-3) subjects were provided information about fictive team members with whom they had to imagine performing a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking) were combined in a 3x3 full factorial design yielding nine groups with different ability profiles. At t1 subjects were asked to rate their confidence that the teams would perform well in the triathlon task, at t2 and t3 subjects were asked how motivated they were to perform at their best in the respective groups. At t3 the presence of an individual performance ranking was mentioned in the cover story. Mixed linear models (SPSS) and structural equation models for complex survey data (Mplus) were specified to estimate the effects of the individual performance rankings on the relationship between group-efficacy beliefs and performance motivation. Results A significant interaction effect for individual group-efficacy beliefs and the triathlon condition on performance motivation was found; the effect of group-efficacy beliefs on performance motivation being smaller with individual performance rankings available. The partial mediation of group attributes on performance motivation by group-efficacy beliefs disappeared with the announcement of individual performance rankings. Conclusion In teams low in task relevant abilities the disadvantageous effect of group-efficacy beliefs on performance motivation might be reduced by providing means of evaluating individual performances apart from a group’s overall performance. While it is believed that a common group goal is a core criterion for a well performing sport group future studies should also aim at the possible benefit of individualized goal setting in groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain's intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2×2×2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test-retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905±0.033 between-sessions; 0.885±0.052 between-scanners) than ASL (0.545±0.048; 0.575±0.059). Nevertheless, ASL provided highly reproducible (0.955±0.021; 0.970±0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant‐mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varying the identity of all involved players. We investigated the influence of herbivore identity and plant genotype on the interaction between leaf‐chewing and root‐feeding herbivores in maize using a partial factorial design. We assessed the influence of leaf induction by oral secretions of six different chewing herbivores on the response of nine different maize genotypes and three different root feeders. Contrary to our expectations, we found a highly conserved pattern across all three dimensions of specificity: The majority of leaf herbivores elicited a negative behavioral response from the different root feeders in the large majority of tested plant genotypes. No facilitation was observed in any of the treatment combinations. However, the oral secretions of one leaf feeder and the responses of two maize genotypes did not elicit a response from a root‐feeding herbivore. Together, these results suggest that plant‐mediated interactions in the investigated system follow a general pattern, but that a degree of specificity is nevertheless present. Our study shows that within a given plant species, plant‐mediated interactions between herbivores of the same feeding guild can be stable. This stability opens up the possibility of adaptations by associated organisms and suggests that plant‐mediated interactions may contribute more strongly to evolutionary dynamics in terrestrial (agro)ecosystems than previously assumed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to develop a pictorial presence scale using selfassessment- manikins (SAM). The instrument assesses presence sub-dimensions (selflocation and possible actions) as well as presence determinants (attention allocation, spatial situation model, higher cognitive involvement, and suspension of disbelief). To qualitatively validate the scale, think-aloud protocols and interviews (n = 12) were conducted. The results reveal that the SAM items are quickly filled out as well as easily, intuitively, and unambiguously understood. Furthermore, the instrument’s validity and sensitivity was quantitatively examined in a two-factorial design (n = 317). Factors were medium (written story, audio book, video, and computer game) and distraction (non-distraction vs. distraction). Factor analyses reveal that the SAM presence dimensions and determinants closely correspond to those of the MEC Spatial Presence Questionnaire, which was used as a comparison measure. The findings of the qualitative and quantitative validation procedures show that the Pictorial Presence SAM successfully assesses spatial presence. In contrast to the verbal questionnaire data (MEC), the significant distraction effect suggests that the new scale is even more sensitive. This points out that the scale can be a useful alternative to existing verbal presence selfreport measures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and diversity. Here we excluded foliar fungal pathogens from perennial grassland by using fungicide to determine the effect of natural levels of disease on an otherwise undisturbed plant community. Importantly, we excluded foliar fungal pathogens along with rabbits, insects, and mollusks in a full factorial design, which allowed a comparison of pathogen effects along with those of better studied plant enemies. This revealed that fungal pathogens substantially reduced aboveground plant biomass and promoted plant diversity and that this especially benefited legumes. The scale of pathogen effects on productivity and biodiversity was similar to that of rabbits and insects, but different plant species responded to the exclusion of the three plant enemies. These results suggest that theories of plant coexistence and management of biodiversity in grasslands should consider foliar fungal pathogens as potentially important drivers of community composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se evaluaron tres variedades de Iris xiphium L. cultivadas en maceta en cuatro proporciones de humus de lombriz y se aplicaron los lixiviados diluidos como bioabono foliar. El experimento se realizó en un diseño completamente al azar con arreglo trifactorial y se midieron ocho variables: longitud de tallo (LT), longitud de botón (LB), longitud de flor (LF), diámetro de botón (DB), diámetro de flor (DF), biomasa (B), área foliar (AF) y días de cosecha (DDC). Los resultados indicaron que la variedad Telstar resultó ser la más precoz. El mejor tratamiento en dicha variedad para las variables LT, LB, B, DF y DDC correspondió a la proporción 30/70 (% lombrihumus / % suelo) y la dilución 1:10 de lixiviado; el segundo mejor tratamiento fue en la variedad Discovery en la proporción 40/60 (%lombrihumus / %suelo) y dilución 1:10 de lixiviado para las variables LT, AF y B. El presente trabajo aporta nueva información en cuanto al uso de sustratos y abono foliar orgánicos para el manejo sustentable, con bajo impacto ambiental, en cultivos florícolas.