719 resultados para explanation-based learning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter appears in Encyclopaedia of Human Resources Information Systems: Challenges in e-HRM edited by Torres-Coronas, T. and Arias-Oliva, M. Copyright 2009, IGI Global, www.igi-global.com. Posted by permission of the publisher. URL:http://www.igi-pub.com/reference/details.asp?id=7737

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter appears in Encyclopaedia of Distance Learning 2nd Edition edit by Rogers, P.; Berg, Gary; Boettecher, Judith V.; Howard, Caroline; Justice, Lorraine; Schenk, Karen D.. Copyright 2009, IGI Global, www.igi-global.com. Posted by permission of the publisher. URL: http://www.igi-global.com/reference/ details.asp?ID=9703&v=tableOfContents

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Eletrónica e de Computadores

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2008

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La recerca efectuada sobre les estratègies d’aprenentatge de llengües ha demostrat que els aprenents que utilitzen estratègies metacognitives (planificació, revisió i avaluació) desenvolupen estratègies cognitives més eficaces (Anderson, 2002). Aquest article descriu les activitats que 43 estudiants de llengua estrangera de la Universitat de Vic van emprendre de forma independent i dedueix les estratègies metacognitives que van utilitzar sense cap formació prèvia en estratègies. Els estudiants van completar un dossier on expressaven les necessitats d’aprenentatge, la planificació i supervisió de les activitats i finalment l’avaluació de l’aprenentatge que havien portat a terme de manera independent fora de les hores lectives. La primera fase de l’anàlisi de les dades revela que, tot i que els estudiants foren capaços d’expressar les necessitats d’aprenentatge en general, la formulació d’objectius i la supervisió de les activitats fou escassa. La discussió gira entorn de la formació dels estudiants de llengües estrangeres en estratègies metacognitives i la integració de l’aprenentatge autònom dins el currículum docent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examine why firms combine convertible debt offerings with stock repurchases. In 2006, 33% of the convertible issuers in the US simultaneously repurchased stock. These combined transactions are inconsistent with traditional motivations for convertible issuance. We document that convertible arbitrage drives these stock repurchases. Convertible debt arbitrageurs simultaneously buy convertibles and short sell the issuer’s common stock, resulting in downward pressure on the stock price. To prevent such short-selling activity, firms repurchase their stock directly from arbitrageurs. We show that combined transactions exhibit lower short-selling activity and that convertible arbitrage explains both the size and speed of the stock repurchases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Personalization in e-learning allows the adaptation of contents, learning strategiesand educational resources to the competencies, previous knowledge or preferences of the student. This project takes a multidisciplinary perspective for devising standards-based personalization capabilities into virtual e-learning environments, focusing on the conceptof adaptive learning itinerary, using reusable learning objects as the basis of the system and using ontologies and semantic web technologies.