961 resultados para excitation fuction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turning points for transitions between the electrostatic and electromagnetic discharge modes in low-frequency (∼ 500 kHz) inductively coupled plasmas have been identified and cross-referenced using time-resolved measurements of the plasma optical emission intensities, RF coil current, and ion saturation current collected by a single RF-compensated Langmuir probe. This enables one to monitor the variation of the plasma parameters, power transfer efficiency, which accompany the discharge hysteresis. The excitation conditions for the pure and hybrid modes in the plasma are considered, and the possibility of the TMmnl → TEm'n'l' transitions at higher frequencies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled interaction of high-power pulsed electromagnetic radiation with plasma-exposed solid surfaces is a major challenge in applications spanning from electron beam accelerators in microwave electronics to pulsed laser ablation-assisted synthesis of nanomaterials. It is shown that the efficiency of such interaction can be potentially improved via an additional channel of wave power dissipation due to nonlinear excitation of two counterpropagating surface waves, resonant excitations of the plasma-solid system.Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical-semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and experimental results associated with the studies of different properties of surface-type waves (SW) in plasma-like medium-metal structures are reviewed. The propagation of surface waves in the Voigt geometry (the SW propagate across the external magnetic field, which is parallel to the interface) is considered. Various problems dealing with the linear properties of the SW (dispersion characteristics, electromagnetic fields topography, influence of the inhomogeneity of the medium, etc.); excitation mechanisms of the plasma-metal waveguide structures (parametric, drift, diffraction, etc. mechanisms); nonlinear effects associated with SW propagation (higher harmonics generation, self-interaction, nonlinear damping, nonlinear interactions, etc.) are presented. In many cases the results are valid for both gaseous and solid-state plasmas. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current-driven dust ion-acoustic instability in a collisional dusty plasma is studied. The effects of dust-charge variation, electron and ion capture by the dust grains, as well as various dissipative mechanisms leading to the changes of the particles momenta, are taken into account. It is shown that the threshold for the excitation of the dust ion-acoustic waves can be high because of the large dissipation rate induced by the dusts. © 1999 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear effect of hf surface waves self-interaction in a magnetoactive planar plasma waveguide is studies. The waveguide structure under consideration can be formed by gaseous or semiconducting homogeneous plasma, which is limited by a perfectly conducting metal surface. The surface (localized near the surface) wave perturbations propagating on the plasma-metal boundary perpendicular to the constant external magnetic field, are investigated. The nonlinear frequency shift connected with interaction of the second harmonic and static surface perturbations with the main frequency wave, is determined using the approximation of weak nonlinearity. It is shown that the process of double-frequency signal generation is the dissipative one as a result of bulk wave excitation on the surface wave second harmonic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antenna arrays are groups of antenna elements spaced in a geometrical pattern. By changing the phase excitation of each element, the array is capable of transmitting electromagnetic waves strongly in a chosen direction with little or no radiation in another direction, thus controlling the array's radiation pattern without physically moving any parts. An antenna array of sub-arrays replaces conventional antenna elements with compact circular arrays with potential for improved performance. This thesis expands on the concept by exploring the development, realisation and operation of an array of subarrays. The overall size of the array essentially remains the same, but the array's performance is improved due to having steerable directive subarrays. The negative effects of strong mutual coupling between closely spaced elements of a subarray are analysed and a number of new solutions for element decoupling are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequency domain spectroscopy (FDS) is being used to assess the insulation condition of oil–paper power transformers. However, it has to date only been implemented on de-energised transformers, which requires the transformers to be shut down for an extended period and may cause significant costs. To solve this issue, a newly improved monitoring method based on the FDS principle is proposed to implement the dielectric measurement on energised transformers. Moreover, a chirp waveform excitation and its novel processing method are introduced. Compared with the conventional FDS results, dielectric results from the energised insulation system have higher tanδ values because of the increased losses. To further understand the insulation ageing process, the effects of the geometric capacitance are removed from the measured imaginary admittance of the insulation system to enhance the ageing signature. The resulting imaginary admittance is then shown to correlate well with the central time constant in return voltage measurements results. The proposed methods address the issues on techniques used on energised transformers and provide a clue for on-line FDS diagnostic application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the condition as well as the remaining life of an insulation system is essential for the reliable operation of large oil-filled power transformers. Frequency-domain spectroscopy (FDS) is one of the diagnostic techniques used to identify the dielectric status of a transformer. Currently, this technique can only be implemented on a de-energized transformer. This paper presents an initial investigation into a novel online monitoring method based on FDS dielectric measurements for transformers. The proposed technique specifically aims to address the real operational constraints of online testing. This is achieved by designing an online testing model extending the basic “extended Debye” linear dielectric model and taking unique noise issues only experienced during online measurements into account via simulations. Approaches to signal denoising and potential problems expected to be encountered during online measurements will also be discussed. Using fixed-frequency sinusoidal excitation waveforms will result in a long measurement times. The use of alternatives such as a chirp has been investigated using simulations. The results presented in the paper predict that reliable measurements should be possible during online testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is one of the most intensely studied wide band gap semiconductors due to its many desirable properties. This project established new techniques for investigating the hydrodynamic properties of ZnO nanoparticles, their assembly into useful photonic structures, and their multiphoton absorption coefficients for excitation with visible or infrared light rather than ultraviolet light. The methods developed are also applicable to a wide range of nanoparticle samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine the relative contributions of rods, cones and melanopsin to pupil responses in humans using temporal sinusoidal stimulation for light levels spanning the low mesopic to photopic range. Methods: A four-primary Ganzfeld photostimulator controlled flicker stimulations at seven light levels (-2.7 to 2 log cd/m2) and five frequencies (0.5 to 8Hz). Pupil diameter was measured using a high-resolution eyetracker. Three kinds of sinusoidal photoreceptor modulations were generated using silent substitution: 1) rod modulation, 2) cone modulation, and 3) combined rod and cone modulation in phase (Experiment 1) or phase shifted (Experiment 2) from a fixed rod phase. The melanopsin excitation was computed for each condition. A vector sum model was used to estimate the relative contribution of rods, cones and melanopsin to the pupil response. Results: From Experiment 1, the pupil frequency response peaked at 1Hz at two mesopic light levels for the three modulation conditions. Analyzing the rod-cone phase difference for the combined modulations (Experiment 2) identified a V-shaped response amplitude with a minimum between 135° and 180°. The pupil response phases increased as cone modulation phase increased. The pupil amplitude increased with increasing light level for cone and combined in-phase rod and cone modulation, but not for the rod modulation. Conclusions: These results demonstrate that cone- and rod-pathway contributions are more predominant than melanopsin contribution to the phasic pupil response. The combined rod, cone and melanopsin inputs to the phasic state of the pupil light reflex follow linear summation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.