887 resultados para equine infectious anemia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strategy for cloning and mutagenesis of an infectious herpesvirus genome is described. The mouse cytomegalovirus genome was cloned and maintained as a 230 kb bacterial artificial chromosome (BAC) in E. coli. Transfection of the BAC plasmid into eukaryotic cells led to a productive virus infection. The feasibility to introduce targeted mutations into the BAC cloned virus genome was shown by mutation of the immediate-early 1 gene and generation of a mutant virus. Thus, the complete construction of a mutant herpesvirus genome can now be carried out in a controlled manner prior to the reconstitution of infectious progeny. The described approach should be generally applicable to the mutagenesis of genomes of other large DNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many new diseases have emerged within the past 2 decades [Cohen, M. L. (1998) Brit. Med. Bull. 54, 523–532], attributing low numbers of animal hosts to the existence of even a new pathogen is problematic. This is because very rarely does one have data on host abundance before and after the epizootic as well as detailed descriptions of pathogen prevalence [Dobson, A. P. & Hudson, P. J. (1985) in Ecology of Infectious Diseases in Natural Populations, eds. Grenfell, B. T. & Dobson, A. P. (Cambridge Univ. Press, Cambridge, U.K.), pp. 52–89]. Month by month we tracked the spread of the epizootic of an apparently novel strain of a widespread poultry pathogen, Mycoplasma gallisepticum, through a previously unknown host, the house finch, whose abundance has been monitored over past decades. Here we are able to demonstrate a causal relationship between high disease prevalence and declining house finch abundance throughout the eastern half of North America because the epizootic reached different parts of the house finch range at different times. Three years after the epizootic arrived, house finch abundance stabilized at similar levels, although house finch abundance had been high and stable in some areas but low and rapidly increasing in others. This result, not previously documented in wild populations, is as expected from theory if transmission of the disease was density dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of cDNA clones encoding large-size RNA molecules of biological interest, like coronavirus genomes, which are among the largest mature RNA molecules known to biology, has been hampered by the instability of those cDNAs in bacteria. Herein, we show that the application of two strategies, cloning of the cDNAs into a bacterial artificial chromosome and nuclear expression of RNAs that are typically produced within the cytoplasm, is useful for the engineering of large RNA molecules. A cDNA encoding an infectious coronavirus RNA genome has been cloned as a bacterial artificial chromosome. The rescued coronavirus conserved all of the genetic markers introduced throughout the sequence and showed a standard mRNA pattern and the antigenic characteristics expected for the synthetic virus. The cDNA was transcribed within the nucleus, and the RNA translocated to the cytoplasm. Interestingly, the recovered virus had essentially the same sequence as the original one, and no splicing was observed. The cDNA was derived from an attenuated isolate that replicates exclusively in the respiratory tract of swine. During the engineering of the infectious cDNA, the spike gene of the virus was replaced by the spike gene of an enteric isolate. The synthetic virus replicated abundantly in the enteric tract and was fully virulent, demonstrating that the tropism and virulence of the recovered coronavirus can be modified. This demonstration opens up the possibility of employing this infectious cDNA as a vector for vaccine development in human, porcine, canine, and feline species susceptible to group 1 coronaviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine papillomavirus type 1 (BPV-1) induces fibropapillomas in its natural host and can transform fibroblasts in culture. The viral genome is maintained as an episome within fibroblasts, which has allowed extensive genetic analyses of the viral functions required for DNA replication, gene expression, and transformation. Much less is known about BPV-1 gene expression and replication in bovine epithelial cells because the study of the complete viral life cycle requires an experimental system capable of generating a fully differentiated stratified bovine epithelium. Using a combination of organotypic raft cultures and xenografts on nude mice, we have developed a system in which BPV-1 can replicate and produce infectious viral particles. Organotypic cultures were established with bovine keratinocytes plated on a collagen raft containing BPV-1-transformed fibroblasts. These keratinocytes were infected with virus particles isolated from a bovine wart or were transfected with cloned BPV-1 DNA. Several days after the rafts were lifted to the air interface, they were grafted on nude mice. After 6–8 weeks, large xenografts were produced that exhibited a hyperplastic and hyperkeratotic epithelium overlying a large dermal fibroma. These lesions were strikingly similar to a fibropapilloma caused by BPV-1 in the natural host. Amplified viral DNA and capsid antigens were detected in the suprabasal cells of the epithelium. Moreover, infectious virus particles could be isolated from these lesions and quantitated by a focus formation assay on mouse cells in culture. Interestingly, analysis of grafts produced with infected and uninfected fibroblasts indicated that the fibroma component was not required for productive infection or morphological changes characteristic of papillomavirus-infected epithelium. This system will be a powerful tool for the genetic analysis of the roles of the viral gene products in the complete viral life cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992–1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large sections of the 3′ untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3′ terminal conserved region or the poly(U–UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem–loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3′ UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U–UC) region and the conserved region, but not the variable region, of the 3′ UTR seem to be critical for in vivo infectivity of HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-12 plays a central role in both the induction and magnitude of a primary Th1 response. A critical question in designing vaccines for diseases requiring Th1 immunity such as Mycobacterium tuberculosis and Leishmania major is the requirements to sustain memory/effector Th1 cells in vivo. This report examines the role of IL-12 and antigen in sustaining Th1 responses sufficient for protective immunity to L. major after vaccination with LACK protein (LP) plus rIL-12 and LACK DNA. It shows that, after initial vaccination with LP plus rIL-12, supplemental boosting with either LP or rIL-12 is necessary but not sufficient to fully sustain long-term Th1 immunity. Moreover, endogenous IL-12 is also shown to be required for the induction, maintenance, and effector phase of the Th1 response after LACK DNA vaccination. Finally, IL-12 is required to sustain Th1 cells and control parasite growth in susceptible and resistant strains of mice during primary and secondary infection. Taken together, these data show that IL-12 is essential to sustain a sufficient number of memory/effector Th1 cells generated in vivo to mediate long-term protection to an intracellular pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent infection with hepatitis C virus (HCV) is among the leading causes of chronic liver disease. Previous studies suggested that genetic variation in hypervariable region 1 (HVR1) of the second envelope protein, possibly in response to host immune pressure, influences the outcome of HCV infection. In the present study, a chimpanzee transfected intrahepatically with RNA transcripts of an infectious HCV clone (pCV-H77C) from which HVR1 was deleted became infected; the ΔHVR1 virus was subsequently transmitted to a second chimpanzee. Infection with ΔHVR1 virus resulted in persistent infection in the former chimpanzee and in acute resolving infection in the latter chimpanzee. Both chimpanzees developed hepatitis. The ΔHVR1 virus initially replicated to low titers, but virus titer increased significantly after mutations appeared in the viral genome. Thus, wild-type HCV without HVR1 was apparently attenuated, suggesting a functional role of HVR1. However, our data indicate that HVR1 is not essential for the viability of HCV, the resolution of infection, or the progression to chronicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (−)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (−)strand RNAs, and attempts to initiate infection with multimeric (−)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (−)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (−)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (−)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (−)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (−)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (−)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (−)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (−)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies, or prion diseases, are fatal degenerative disorders of the central nervous system that affect humans and animals. Prions are nonconventional infectious agents whose replication depends on the host prion protein (PrP). Transmission of prions to cultured cells has proved to be a particularly difficult task, and with a few exceptions, their experimental propagation relies on inoculation to laboratory animals. Here, we report on the development of a permanent cell line supporting propagation of natural sheep scrapie. This model was obtained by stable expression of a tetracycline-regulatable ovine PrP gene in a rabbit epithelial cell line. After exposure to scrapie agent, cultures were repeatedly found to accumulate high levels of abnormal PrP (PrPres). Cell extracts induced a scrapie-like disease in transgenic mice overexpressing ovine PrP. These cultures remained healthy and stably infected upon subpassaging. Such data show that (i) cultivated cells from a nonneuronal origin can efficiently replicate prions; and (ii) species barrier can be crossed ex vivo through the expression of a relevant PrP gene. This approach led to the ex vivo propagation of a natural transmissible spongiform encephalopathy agent (i.e., without previous experimental adaptation to rodents) and might be applied to human or bovine prions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a rare, genetically heterogeneous autosomal recessive disorder associated with progressive aplastic anemia, congenital abnormalities, and cancer. FA has a very high incidence in the Afrikaner population of South Africa, possibly due to a founder effect. Previously we observed allelic association between polymorphic markers flanking the FA group A gene (FANCA) and disease chromosomes in Afrikaners. We genotyped 26 FA families with microsatellite and single nucleotide polymorphic markers and detected five FANCA haplotypes. Mutation scanning of the FANCA gene revealed association of these haplotypes with four different mutations. The most common was an intragenic deletion of exons 12–31, accounting for 60% of FA chromosomes in 46 unrelated Afrikaner FA patients, while two other mutations accounted for an additional 20%. Screening for these mutations in the European populations ancestral to the Afrikaners detected one patient from the Western Ruhr region of Germany who was heterozygous for the major deletion. The mutation was associated with the same unique FANCA haplotype as in Afrikaner patients. Genealogical investigation of 12 Afrikaner families with FA revealed that all were descended from a French Huguenot couple who arrived at the Cape on June 5, 1688, whereas mutation analysis showed that the carriers of the major mutation were descendants of this same couple. The molecular and genealogical evidence is consistent with transmission of the major mutation to Western Germany and the Cape near the end of the 17th century, confirming the existence of a founder effect for FA in South Africa.