955 resultados para environmental evaluation
Resumo:
The toxicity of herbicides used in agriculture is influenced by their chemical stability, solubility, bioavailability, photodecomposition, and soil sorption. Possible solutions designed to minimize toxicity include the development of carrier systems able to modify the properties of the compounds and allow their controlled release. Polymeric poly(epsilon-caprolactone) (PCL) nanocapsules containing three triazine herbicides (ametryn, atrazine, and simazine) were prepared and characterized in order to assess their suitability as controlled release systems that could reduce environmental impacts. The association efficiencies of the herbicides in the nanocapsules were better than 84%. Assessment of stability (considering particle diameter, zeta potential, polydispersity, and pH) was conducted over a period of 270 days, and the particles were found to be stable in solution. In vitro release kinetics experiments revealed controlled release of the herbicides from the nanocapsules, governed mainly by relaxation of the polymer chains. Microscopy analyses showed that the nanocapsules were spherical, dense, and without aggregates. In the infrared spectra of the PCL nanocapsules containing herbicides, there were no bands related to the herbicides, indicating that interactions between the compounds had occurred. Genotoxicity tests showed that formulations of nanocapsules containing the herbicides were less toxic than the free herbicides. The results indicate that the use of PCL nanocapsules is a promising technique that could improve the behavior of herbicides in environmental systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The production and use of synthetic nanoparticles is growing rapidly, and therefore the presence of these materials in the environment seems inevitable. Titanium dioxide (TiO2) presents various possible uses in industry, cosmetics, and even in the treatment of contaminated environments. Studies about the potential ecotoxicological risks of TiO2 nanoparticles (nano-TiO2) have been published but their results are still inconclusive. It should be noted that the properties of the diverse nano-TiO2 must be considered in order to establish experimental models to study their toxicity to environmentally relevant species. Moreover, the lack of descriptions and characterization of nanoparticles, as well as differences in the experimental conditions employed, have been a compromising factor in the comparison of results obtained in various studies. Therefore, the purpose of this paper is to make a simple review of the principal properties of TiO2, especially in nanoparticulate form, which should be considered in aquatic toxicology studies, and a compilation of the works that have been published on the subject.
Resumo:
Background: Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials.Purpose and methods: Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison.Results: The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed.Conclusion: This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental impacts.
Resumo:
Noise mapping has been used as an instrument for assessment of environmental noise, helping to support decision making on urban planning. In Brazil, urban noise is not yet recognized as a major environmental problem by the government. Besides, cities that have databases to drive acoustic simulations, making use of advanced noise mapping systems, are rare. This study sought an alternative method of noise mapping through the use of geoprocessing, which is feasible for the Brazilian reality and for other developing countries. The area chosen for the study was the central zone of the city of Sorocaba, located in So Paulo State, Brazil. The proposed method was effective in the spatial evaluation of equivalent sound pressure level. The results showed an urban area with high noise levels that exceed the legal standard, posing a threat to the welfare of the population.
Resumo:
Epilithic biofilm on rocky shores is regulated by physico-chemical and biological factors and is important as a source of food for benthic organisms. The influences of environmental and grazing pressure on spatial variability of biomass of biofilm were evaluated on shores on the north coast of São Paulo State (SE Brazil). A general trend of greater abundance of microalgae was observed lower on the shore, but neither of the environmental factors evaluated (wave exposure and shore level) showed consistent effects, and differences were found among specific shores or times (September 2007 and March 2008). The abundance of slow-moving grazers (limpets and littorinids) showed a negative correlation with chlorophyll a concentration on shores. However, experimental exclusion of these grazers failed to show consistent results at small spatial scales. Observations of divergent abundances of the isopod Ligia exotica and biomass of biofilm on isolated boulders on shores led to a short exclusion experiment, where the grazing pressure by L. exotica significantly decreased microalgal biomass. The result suggests that grazing activities of this fast-moving consumer probably mask the influence of slow-moving grazers at small spatial scales, while both have an additive effect at larger scales that masks environmental influences. This is the first evaluation of the impact of the fast-moving herbivore L. exotica on microalgal biomass on rocky shores and opens an interesting discussion about the role of these organisms in subtropical coastal environments.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2014
Resumo:
Background: Passive smokers are involuntarily exposed to cigarette or tobacco smoke and as known, inhalation of environmental tobacco smoke is a serious threat. There is little information about the effect of passive smoking on salivary markers and periodontal indices. Objectives: This study investigated the effect of passive smoking on lactoferrin and AST in 12 - 15 years old children and adolescents. Patients and Methods: This case-control analytic correlation type study with no-convenience random sampling method was performed on 160 children aged 12 - 15 who had smokers in their families. The eligible children were divided into two equal groups; 80 cot+ children as case group and 80 cot– children as control group, matched according to age, sex and plaque index. Plaque index was obtained from all subjects. 2 cc unstimulated salivary samples were collected by spitting method. The collected specimens were tested by lactoferrin and AST kits in biochemistry were measured on the day of sampling laboratory. Gingival index Loe and Silness (GI) and Probing Pocket Depth (PPD). Results: Mean and Standard Deviation of PPD and GI was 2.01 ± 0.077 and 1.53 ± 0.055 in experimental group and 1.93 ± 0.073 and 1.49 ± 0.046 in control group respectively (P < 0.001). The Mean and Standard Deviation parameters of lactoferrin and AST, in the experimental group was 38.66 ± 25.15 and 13.45 ± 6.33 and in the control group 10.18 ± 6.82 and 6.53 ± 2.65 group, respectively (P < 0.001). Conclusions: Passive smoking can be effective on inflammatory process of periodontal and salivary biomarkers related to inflammation. Lactoferrin was 11 - 104 in case group and 0.5 - 38 in control group. Aspartat aminotransferase in case group was 2.64 - 30.43 and in control group it was 2.16 - 12.02.
Resumo:
O objetivo deste trabalho foi avaliar o efeito da utilização de diferentes manejos alimentares: alimento natural, ração peletizada, extrusada ou farelada, sobre a qualidade da água dos efluentes gerados em uma criação de tilápia do Nilo (Oreochromis niloticus). O experimento foi desenvolvido durante 19 semanas em doze viveiros de 300 m², com renovação contínua de água, povoados com juvenis machos de tilápia do Nilo na densidade de 1,7 peixes m-2. As rações isoproteícas (30% de proteína bruta) e isoenergéticas (3.000kcal de energia digestível) foram fornecidas duas vezes ao dia. Quanto ao tratamento alimento natural, foi utilizado esterco de galinha poedeira. Semanalmente, foram aferidos na água de abastecimento e nos efluentes, temperatura, oxigênio dissolvido, pH, fósforo total, nitrogênio total, clorofila a e material em suspensão. de maneira geral, houve piora na qualidade da água dos efluentes de todos os tratamentos estudados, em comparação a água de abastecimento, evidenciando o impacto ambiental desta atividade produtiva, podendo levar a eutrofização dos corpos d'água receptores.
Resumo:
Sustainable development has only recently started examining the existing infrastructure, and a key aspect of this is hazard mitigation. To examine buildings under a sustainable perspective requires an understanding of a building's life-cycle environmental costs, including the consideration of associated environmental impacts induced by earthquake damage. Damage repair costs lead to additional material and energy consumption, leading to harmful environmental impacts. Merging results obtained from a seismic evaluation and life-cycle analysis for buildings will give a novel outlook on sustainable design decisions. To evaluate the environmental impacts caused by buildings, long-term impacts accrued throughout a building's lifetime and impacts associated with damage repair need to be quantified. A method and literature review for completing this examination has been developed and is discussed. Using software Athena and HAZUS-MH, this study evaluated the performance of steel and concrete buildings considering their life-cycle assessments and earthquake resistance. It was determined that code design-level greatly effects a building repair and damage estimations. This study presented two case study buildings and found specific results that were obtained using several premade assumptions. Future research recommendations were provided to make this methodology more useful in real-world applications. Examining cost and environmental impacts that a building has through, a cradle-to-grave analysis and seismic damage assessment will help reduce material consumption and construction activities from taking place before and after an earthquake event happens.
Resumo:
United States federal agencies assess flood risk using Bulletin 17B procedures which assume annual maximum flood series are stationary. This represents a significant limitation of current flood frequency models as the flood distribution is thereby assumed to be unaffected by trends or periodicity of atmospheric/climatic variables and/or anthropogenic activities. The validity of this assumption is at the core of this thesis, which aims to improve understanding of the forms and potential causes of non-stationarity in flood series for moderately impaired watersheds in the Upper Midwest and Northeastern US. Prior studies investigated non-stationarity in flood series for unimpaired watersheds; however, as the majority of streams are located in areas of increasing human activity, relative and coupled impacts of natural and anthropogenic factors need to be considered such that non-stationary flood frequency models can be developed for flood risk forecasting over relevant planning horizons for large scale water resources planning and management.
Resumo:
Hazardous materials are substances that, if not regulated, can pose a threat to human populations and their environmental health, safety or property when transported in commerce. About 1.5 million tons of hazardous material shipments are transported by truck in the US annually, with a steady increase of approximately 5% per year. The objective of this study was to develop a routing tool for hazardous material transport in order to facilitate reduced environmental impacts and less transportation difficulties, yet would also find paths that were still compelling for the shipping carriers as a matter of trucking cost. The study started with identification of inhalation hazard impact zones and explosion protective areas around the location of hypothetical hazardous material releases, considering different parameters (i.e., chemicals characteristics, release quantities, atmospheric condition, etc.). Results showed that depending on the quantity of release, chemical, and atmospheric stability (a function of wind speed, meteorology, sky cover, time and location of accidents, etc.) the consequence of these incidents can differ. The study was extended by selection of other evaluation criteria for further investigation because health risk as an evaluation criterion would not be the only concern in selection of routes. Transportation difficulties (i.e., road blockage and congestion) were incorporated as important factor due to their indirect impact/cost on the users of transportation networks. Trucking costs were also considered as one of the primary criteria in selection of hazardous material paths; otherwise the suggested routes would have not been convincing for the shipping companies. The last but not least criterion was proximity of public places to the routes. The approach evolved from a simple framework to a complicated and efficient GIS-based tool able to investigate transportation networks of any given study area, and capable of generating best routing options for cargos. The suggested tool uses a multi-criteria-decision-making method, which considers the priorities of the decision makers in choosing the cargo routes. Comparison of the routing options based on each criterion and also the overall suitableness of the path in regards to all the criteria (using a multi-criteria-decision-making method) showed that using similar tools as the one proposed by this study can provide decision makers insights in the area of hazardous material transport. This tool shows the probable consequences of considering each path in a very easily understandable way; in the formats of maps and tables, which makes the tradeoffs of costs and risks considerably simpler, as in some cases slightly compromising on trucking cost may drastically decrease the probable health risk and/or traffic difficulties. This will not only be rewarding to the community by making cities safer places to live, but also can be beneficial to shipping companies by allowing them to advertise as environmental friendly conveyors.
Resumo:
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (qmax) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.
Resumo:
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (qmax) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.
Resumo:
Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02 μg/L. Pharmaceutical compounds were detected in 35% of 63 samples. Of the 14 pharmaceuticals detected, six had reported concentrations above the method reporting limit, with the maximum reported concentration of 826 ng/L for acetaminophen. Diphenhydramine was the only pharmaceutical to have two detections above the reporting limit, at 24.5 and 145 ng/L. Eight pharmaceuticals had confirmed detections at concentrations below the method reporting limit. Caffeine was the most frequently detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7-dimethylxanthine (16%). Microorganisms were detected in 21% of the wells using quantitative polymerase chain reaction methodologies. The most frequently detected microorganism was the pepper mild mottle virus (PMMV), a plant pathogen found in human waste. PMMV was detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per liter. GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, Salmonella, and enterohemmorhagic E. coli were not detected. No correlations were found between viruses or pathogenic bacteria and microbial indicators. Wells with less than 50 feet (15 meters) of confining material were shown to have greater incidence of surface-related contaminants; however, significant relationships (p<0.05) between confining layer thickness and contaminants were only found for nitrate and herbicides.
Resumo:
Le bois est un matériau souvent utilisé par les architectes pour améliorer l’ambiance générale d’un espace, mais peu de recherches en présentent l’impact réel du matériau sur les impressions visuelles et les effets lumineux. Cette recherche étudie l’influence de la matérialité du bois par rapport à la création d’ambiances d’éclairage spécifiques dans l’architecture. Plus particulièrement, elle se concentre sur l’impact des panneaux décoratifs en bois à générer de la diversité lumineuse dans les espaces intérieurs et son potentiel à améliorer la satisfaction environnementale et l’efficacité énergétique. La recherche utilise des maquettes à l’échelle pour leur précision dans la représentation des ambiances lumineuses d’espaces éclairés naturellement ainsi que les technologies récentes d’imagerie digitale pour capturer et analyser les résultats. La méthodologie permet la comparaison entre les différents réglages des espaces intérieurs créés par une sélection des types de matérialités du bois: la réflectance (valeur), la couleur et la réflectivité. Les modalités spatiales sont comparées en présence d’ensoleillement direct et sous des conditions de ciel couvert puisque les modèles d’éclairage et les ambiances diffèrent considérablement. Les résultats permettent d’établir une discussion sur les ambiances en termes de brillance et de contraste, sur la couleur ainsi que la répartition des zones lumineuses dans l’espace. La recherche souligne le rôle des matérialités que peuvent prendre le bois pour optimiser la diversité lumineuse et la création d’ambiances visuellement confortables, ainsi que ses possibilités d’améliorer les ambiances architecturales par rapport à la lumière.