829 resultados para energy efficient
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.
Resumo:
The work described in this thesis began as an inquiry into the nature and use of optimization programs based on "genetic algorithms." That inquiry led, eventually, to three powerful heuristics that are broadly applicable in gradient-ascent programs: First, remember the locations of local maxima and restart the optimization program at a place distant from previously located local maxima. Second, adjust the size of probing steps to suit the local nature of the terrain, shrinking when probes do poorly and growing when probes do well. And third, keep track of the directions of recent successes, so as to probe preferentially in the direction of most rapid ascent. These algorithms lie at the core of a novel optimization program that illustrates the power to be had from deploying them together. The efficacy of this program is demonstrated on several test problems selected from a variety of fields, including De Jong's famous test-problem suite, the traveling salesman problem, the problem of coordinate registration for image guided surgery, the energy minimization problem for determining the shape of organic molecules, and the problem of assessing the structure of sedimentary deposits using seismic data.
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
This CEPS Task Force Report focuses on how to improve water efficiency in Europe, notably in public supply, households, agriculture, energy and manufacturing as well as across sectors. It presents a number of recommendations on how to make better use of economic policy instruments to sustainably manage the EU’s water resources. Published in the run-up to the European Commission’s “Blueprint to Safeguard Europe’s Waters”, the report contributes to the policy deliberations in two ways. First, by assessing the viability of economic policy instruments, it addresses a major shortcoming that has so far prevented the 2000 EU Water Framework Directive (WFD) from becoming fully effective in practice: the lack of appropriate, coherent and effective instruments in (some) member states. Second, as the Task Force report is the result of an interactive process involving a variety of stakeholders, it is able to point to the key differences in interpreting and applying WFD principles that have led to a lack of policy coherence across the EU and to offer some pragmatic advice on moving forward.
Resumo:
The LINK Integrated Farming Systems (LINK-IFS) Project (1992-1997) was setup to compare conventional and integrated arable farming systems (IAFS), concentrating on practical feasibility and economic viability, but also taking into account the level of inputs used and environmental impact. As part of this, an examination into energy use within the two systems was also undertaken. This paper presents the results from that analysis. The data used is from the six sites within the LINK-IFS Project, spread through the arable production areas of England and from the one site in Scotland, covering the 5 years of the project. The comparison of the energy used is based on the equipment and inputs used to produce I kg of each crop within the conventional and integrated rotations, and thereby the overall energy used for each system. The results suggest that, in terms of total energy used, the integrated system appears to be the most efficient. However, in terms of energy efficiency, energy use per kilogram of output, the results are less conclusive. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.
Resumo:
People's interaction with the indoor environment plays a significant role in energy consumption in buildings. Mismatching and delaying occupants' feedback on the indoor environment to the building energy management system is the major barrier to the efficient energy management of buildings. There is an increasing trend towards the application of digital technology to support control systems in order to achieve energy efficiency in buildings. This article introduces a holistic, integrated, building energy management model called `smart sensor, optimum decision and intelligent control' (SMODIC). The model takes into account occupants' responses to the indoor environments in the control system. The model of optimal decision-making based on multiple criteria of indoor environments has been integrated into the whole system. The SMODIC model combines information technology and people centric concepts to achieve energy savings in buildings.
Resumo:
The efficiency of energy utilisation in cattle is a determinant of the profitability of milk and beef production, as well as their environmental impact. At an animal level, meat and milk production by ruminants is less efficient than pig and poultry production, in part due to lower digestibility of forages compared with grains. However, when compared on the basis of human-edible inputs, the ruminant has a clear efficiency advantage. There has been recent interest in feed conversion efficiency (FCE) in dairy cattle and residual feed intake, an indicator of FCE, in beef cattle. Variation between animals in FCE may have genetic components, allowing selection for animals with greater efficiency and reduced environmental impact. A major source of variation in FCE is feed digestibility, and thus approaches that improve digestibility should improve FCE if rumen function is not disrupted. Methane represents a substantial loss of digestible energy from rations. Major determinants of methane emission are the amount of feed consumed and the proportions of forage and concentrates fed. In addition, feeding fat has long been known to reduce methane emission. A myriad of other supplements and additives are currently being investigated as mitigators of methane emission, but in many cases compounds effective in sheep are ineffective in lactating dairy cows. Ultimately, the adoption of ‘best practice’ in diet formulation and management may be the most effective option for reducing methane. In assessing the efficiency of energy use for milk and meat production by cattle, and their environmental impact, it is imperative that comparisons be made at a systems level, and that the wider social and economic implications of mitigation policy are considered.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.
Resumo:
We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.
Resumo:
Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
Different treatments that could be implemented in the home environ-ment are evaluated with the objective of reaching a more rational and efficient use of energy. We consider that a detailed knowledge of energy-consuming behaviour is paramount for the development and implementation of new technologies, services and even policies that could result in more rational energy use. The proposed evaluation methodology is based on the development of economic experiments implemented in an experimental economics laboratory, where the behaviour of individuals when making decisions related to energy use in the domestic environment can be tested.